Dyslipidemia in Myasthenia Gravis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Protocol Approval-Registrations
2.2. Data Sources, Search, and Study Selection
2.3. Quality Control, Bias Assessment, Data Extraction
2.4. Outcomes
2.5. Statistical Analysis
2.6. Data Availability Statement
3. Results
3.1. Literature Search
3.2. Risk of Bias Assessment
3.3. Qualitative Results
3.4. Quantitative Results
3.5. Publication Bias
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, L.H. The Epidemiology of Myasthenia Gravis. Ann. N. Y. Acad. Sci. 2003, 998, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Ciafaloni, E. Myasthenia Gravis and Congenital Myasthenic Syndromes. Contin. Lifelong Learn. Neurol. 2019, 25, 1767–1784. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Dong, X.; Li, Z.; Peng, Y.; Jin, W.; Chen, D.; Zhou, R.; Jiang, F.; Yan, C.; et al. Factors affecting minimal manifestation status induction in myasthenia gravis. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221080520. [Google Scholar] [CrossRef]
- Laslett, L.J.; Alagona, P.; Clark, B.A.; Drozda, J.P.; Saldivar, F.; Wilson, S.R.; Poe, C.; Hart, M. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues. J. Am. Coll. Cardiol. 2012, 60, S1–S49. [Google Scholar] [CrossRef]
- Gu, J.; Xu, Y.; Hua, D.; Chen, Z. Role of artesunate in autoimmune diseases and signaling pathways. Immunotherapy 2023, 15, 1183–1193. [Google Scholar] [CrossRef]
- Ganjifrockwala, F.; Joseph, J.; George, G. Serum Oxidized LDL Levels in Type 2 Diabetic Patients with Retinopathy in Mthatha Region of the Eastern Cape Province of South Africa. Oxid. Med. Cell. Longev. 2016, 2016, 2063103. [Google Scholar] [CrossRef]
- Toms, T.E. Dyslipidaemia in Rheumatological Autoimmune Diseases. Open Cardiovasc. Med. J. 2011, 5, 64–75. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Zivadinov, R.; Mahfooz, N.; Carl, E.; Drake, A.; Schneider, J.; Teter, B.; Hussein, S.; Mehta, B.; Weiskopf, M.; et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J. Neuroinflamm. 2011, 8, 127. [Google Scholar] [CrossRef]
- Bubuioc, A.-M.; Kudebayeva, A.; Turuspekova, S.; Lisnic, V.; Leone, M.A. The epidemiology of myasthenia gravis. J. Med. Life 2021, 14, 7–16. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Morgan, R.L.; Rooney, A.A.; Taylor, K.W.; Thayer, K.A.; Silva, R.A.; Lemeris, C.; Akl, E.A.; Bateson, T.F.; Berkman, N.D.; et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ. Int. 2024, 186, 108602. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M. How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals. Integr. Med. Res. 2023, 12, 101014. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid.-Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Oh, S.J.; Dhall, R.; Young, A.; Morgan, M.B.; Lu, L.; Claussen, G.C. Statins may aggravate myasthenia gravis. Muscle Nerve 2008, 38, 1101–1107. [Google Scholar] [CrossRef]
- Haggård, L.; Andersson, M.; Punga, A.R. β-glucans reduce LDL cholesterol in patients with myasthenia gravis. Eur. J. Clin. Nutr. 2013, 67, 226–227. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Qiu, Z.; Lin, J.; Chen, B.; Li, Y.; Gui, M.; Zhang, M.; Yang, M.; Wang, W.; et al. Analysis of mortality and related factors in 2195 adult myasthenia gravis patients in a 10-year follow-up study. Neurol. India 2017, 65, 518. [Google Scholar] [CrossRef]
- Machado-Alba, J.E.; Calvo-Torres, L.F.; Gaviria-Mendoza, A.; Augusto MejíA-Vélez, C. Prescription profile of pyridostigmine use in a population of patients with myasthenia gravis. Muscle Nerve 2017, 56, 1041–1046. [Google Scholar] [CrossRef]
- Li, L.J.; Guan, Y.Z.; Lü, F.; Song, Y.W.; Xu, X.J.; Jiang, Y.; Wang, O.; Xia, W.B.; Xing, X.P.; Li, M. Glucose and lipid metabolic disorders in myasthenia gravis patients and its mechanisms. Zhonghua Yi Xue Za Zhi 2018, 98, 581–586. [Google Scholar] [CrossRef]
- Tanovska, N.; Novotni, G.; Sazdova-Burneska, S.; Kuzmanovski, I.; Boshkovski, B.; Kondov, G.; Jovanovski-Srceva, M.; Kokareva, A.; Isjanovska, R. Myasthenia Gravis and Associated Diseases. Open Access Maced. J. Med. Sci. 2018, 6, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Misra, U.K.; Kalita, J.; Singh, V.K.; Kumar, S. A study of comorbidities in myasthenia gravis. Acta Neurol. Belg. 2020, 120, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Aleksić, D.Z.; Milosavljević, M.N.; Stefanović, S.M.; Bukonjić, A.; Milosavljević, J.Z.; Janković, S.M.; Božović, I.; Perić, S.; Lavrnić, D. Risk factors for potential drug–drug interactions in patients with myasthenia gravis. Neurol. Res. 2021, 43, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Katyal, N.; Narula, N.; Govindarajan, R. Adverse Side Effects Associated with Corticosteroid Therapy: A Study in 39 Patients with Generalized Myasthenia Gravis. Med. Sci. Monit. 2021, 27, e933296. [Google Scholar] [CrossRef]
- Mahic, M.; Bozorg, A.M.; DeCourcy, J.J.; Golden, K.J.; Gibson, G.A.; Taylor, C.F.; Ting, A.; Story, T.J.; Scowcroft, A. Physician-Reported Perspectives on Myasthenia Gravis in the United States: A Real-World Survey. Neurol. Ther. 2022, 11, 1535–1551. [Google Scholar] [CrossRef]
- Phillips, G.; Abreu, C.; Goyal, A.; Li, Y.; Whangbo, A.; Gelinas, D.; Brauer, E.; Bhattacharya, S. Real-World Healthcare Resource Utilization and Cost Burden Assessment for Adults with Generalized Myasthenia Gravis in the United States. Front. Neurol. 2022, 12, 809999. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Li, Z.; Tan, S.; Yan, C.; Luo, S.; Zhou, L.; Song, J.; Huan, X.; Wang, Y.; et al. Clinical Features of Myasthenia Gravis with Antibodies to MuSK Based on Age at Onset: A Multicenter Retrospective Study in China. Front. Neurol. 2022, 13, 879261. [Google Scholar] [CrossRef]
- Qi, C.Z.; Hughes, T.; Gelinas, D.; Li, Y.; Goyal, A.; Brauer, E.; Bhuwalka, A.; Sato, M.; Jadhav, S.; Phillips, G. Real-world utilization patterns of intravenous immunoglobulin in adults with generalized myasthenia gravis in the United States. J. Neurol. Sci. 2022, 443, 120480. [Google Scholar] [CrossRef]
- Digala, L.P.; Prasanna, S.; Rao, P.; Qureshi, A.I.; Govindarajan, R. Impact of COVID-19 infection among myasthenia gravis patients- a Cerner Real-World DataTM study. BMC Neurol. 2022, 22, 38. [Google Scholar] [CrossRef]
- Ozdemir, H.N.; Karasoy, H.; Yuceyar, A.N.; Ekmekci, O. Effects of comorbid diseases on clinical outcomes in patients with myasthenia gravis. Neurol. Sci. 2023, 44, 2923–2931. [Google Scholar] [CrossRef]
- Tsai, N.-W.; Chien, L.-N.; Hung, C.; Kuo, A.; Chiu, Y.-T.; Lin, H.-W.; Jian, L.-S.; Chou, K.-P.; Yeh, J.-H. Epidemiology, Patient Characteristics, and Treatment Patterns of Myasthenia Gravis in Taiwan: A Population-Based Study. Neurol. Ther. 2024, 13, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Iacono, S.; Militello, M.; Leone, O.; Rispoli, M.G.; Ferri, L.; Ajdinaj, P.; Lanza, P.; Lupica, A.; Crescimanno, G.; et al. Comorbidity in myasthenia gravis: Multicentric, hospital-based, and controlled study of 178 Italian patients. Neurol. Sci. 2024, 45, 3481–3494. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.Z.; Lin, Y.; Li, Y.; Vu, T.; De Ruyck, F.; Gelinas, D.; Shi, L. Characteristics and healthcare utilization of patients with myasthenia gravis exacerbation. J. Neurol. Sci. 2025, 468, 123322. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.T.; Tseng, C.C.; Liang, C.S.; Yeh, T.C.; Hu, L.Y.; Yang, A.C.; Tsai, S.J.; Shen, C.C. Risk of Depressive Disorders Following Myasthenia Gravis: A Nationwide Population-Based Retrospective Cohort Study. Front. Psychiatry 2019, 10, 481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.F.; Chang, Y.H.; Chien, S.C.; Lin, Y.H.; Yeh, H.Y. Epidemiology of Dyslipidemia in the Asia Pacific Region. Int. J. Gerontol. 2018, 12, 2–6. [Google Scholar] [CrossRef]
- Warren, T.Y.; Barry, V.; Hooker, S.P.; Sui, X.; Church, T.S.; Blair, S.N. Sedentary Behaviors Increase Risk of Cardiovascular Disease Mortality in Men. Med. Sci. Sports Exerc. 2010, 42, 879–885. [Google Scholar] [CrossRef]
- Khalil, Y.A.; Rabès, J.P.; Boileau, C.; Varret, M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021, 328, 11–22. [Google Scholar] [CrossRef]
- Šoštarko, M.; Sertić, J.; Gregurić, N.; Stavljenić-Rukavina, A.; Brzović, Z.; Matić, V. Apolipoprotein in E in Myasthenia Gravis. Ann. N. Y. Acad. Sci. 1998, 841, 592–595. [Google Scholar] [CrossRef]
- Gummi, R.R.; Kukulka, N.A.; Deroche, C.B.; Govindarajan, R. Factors associated with acute exacerbations of myasthenia gravis. Muscle Nerve 2019, 60, 693–699. [Google Scholar] [CrossRef]
- Trillenberg, P.; Katalinic, A.; Thern, J.; Graf, T. The risk of worsening of myasthenia by cardiovascular medication as reflected by reporting frequency. Eur. J. Neurol. 2021, 28, 2965–2970. [Google Scholar] [CrossRef]
- Zhang, H.L.; Li, Y. Antibacterial and Antimalarial Therapeutic Agents: A Patent Perspective. Recent. Adv. Inflamm. Allergy Drug Discov. 2024, 18, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Keogh, M.J.; Findlay, J.M.; Leach, S.; Bowen, J. Statin-associated weakness in myasthenia gravis: A case report. J. Med. Case Rep. 2010, 4, 61. [Google Scholar] [CrossRef] [PubMed]
- Gale, J.; Danesh-Meyer, H.V. Statins can induce myasthenia gravis. J. Clin. Neurosci. 2014, 21, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yang, S.; Han, L.; Ba, X.; Shen, P.; Lin, W.; Li, T.; Zhang, R.; Huang, Y.; Huang, Y.; et al. Dyslipidemia in rheumatoid arthritis: The possible mechanisms. Front. Immunol. 2023, 14, 1254753. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Cui, Y.; Yao, G.; Ma, X.; Zhang, H. Dyslipidemia is associated with inflammation and organ involvement in systemic lupus erythematosus. Clin. Rheumatol. 2023, 42, 1565–1572. [Google Scholar] [CrossRef]
Author | Country | Sample | Events | Age | Disease Duration | Onset Age |
---|---|---|---|---|---|---|
Oh et al., 2008 [16] | USA | 170 | 54 | 58.7 | 10 | 48.7 |
Haggård et al., 2013 [17] | Sweden | 59 | 10 | - | 10 | - |
Liu et al., 2017 [18] | China | 2195 | 71 | 41.1 | - | - |
Machado-Alba et al., 2017 [19] | South America | 306 | 41 | 53 | - | - |
Li et al., 2018 [20] | China | 102 | 38 | 40 | - | - |
Tanovska et al., 2018 [21] | Rep. of Macedonia | 127 | 14 | - | - | 48.8 |
Misra et al., 2019 [22] | India | 81 | 27 | 42 | - | - |
Chu et al., 2019 [34] | Taiwan | 349 | 91 | 44 | 10 | - |
Aleksić et al., 2021 [23] | Serbia | 687 | 189 | 55 | - | - |
Johnson et al., 2021 [24] | USA | 39 | 4 | 60 | - | - |
Mahic et al., 2022 [25] | UK | 456 | 99 | 54.5 | 34.1 | 50.5 |
Philips et al., 2022 [26] | USA | 41,940 | 12,415 | 64.7 | - | - |
Zhou et al., 2022 [27] | China | 69 | 5 | - | 2.8 | 44.7 |
Qi et al., 2022 [28] | USA | 38,399 | 14,948 | 63.5 | - | - |
Digala et al., 2022 [29] | USA | 91 | 41 | 64.3 | - | - |
Ozdemir et al., 2023 [30] | Turkey | 168 | 27 | 55.9 | - | 45.8 |
Tsai et al., 2024 [31] | Taiwan | 2813 | 699 | - | - | - |
Di Stefano et al., 2024 [32] | Italy | 178 | 23 | 59.2 | - | - |
Qi et al., 2025 [33] | USA | 10,718 | 7024 | - | - | 70.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannopapas, V.; Smyrni, V.; Papagiannopoulou, G.; Salakou, S.; Kitsos, D.K.; Bethani, I.; Zompola, C.; Tzartos, J.S.; Tsivgoulis, G.; Giannopoulos, S.; et al. Dyslipidemia in Myasthenia Gravis: A Systematic Review and Meta-Analysis. Medicina 2025, 61, 1067. https://doi.org/10.3390/medicina61061067
Giannopapas V, Smyrni V, Papagiannopoulou G, Salakou S, Kitsos DK, Bethani I, Zompola C, Tzartos JS, Tsivgoulis G, Giannopoulos S, et al. Dyslipidemia in Myasthenia Gravis: A Systematic Review and Meta-Analysis. Medicina. 2025; 61(6):1067. https://doi.org/10.3390/medicina61061067
Chicago/Turabian StyleGiannopapas, Vasileios, Vassiliki Smyrni, Georgia Papagiannopoulou, Stavroula Salakou, Dimitrios K. Kitsos, Ilianna Bethani, Christina Zompola, John S. Tzartos, Georgios Tsivgoulis, Sotirios Giannopoulos, and et al. 2025. "Dyslipidemia in Myasthenia Gravis: A Systematic Review and Meta-Analysis" Medicina 61, no. 6: 1067. https://doi.org/10.3390/medicina61061067
APA StyleGiannopapas, V., Smyrni, V., Papagiannopoulou, G., Salakou, S., Kitsos, D. K., Bethani, I., Zompola, C., Tzartos, J. S., Tsivgoulis, G., Giannopoulos, S., & Kosmidou, M. (2025). Dyslipidemia in Myasthenia Gravis: A Systematic Review and Meta-Analysis. Medicina, 61(6), 1067. https://doi.org/10.3390/medicina61061067