Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
- Population: Patients with periodontal diseases.
- Intervention: Artificial intelligence applications (e.g., diagnosis, risk assessment, treatment planning, outcome prediction).
- Comparison: Traditional methods or other AI applications.
- Outcome: Diagnostic accuracy, treatment efficacy.
2.2.1. Inclusion Criteria
- Study Design: Clinical trials, cohort studies, case-control studies, cross-sectional studies.
- Population: Patients with any type of periodontal disease (gingivitis, periodontitis).
- Intervention: Any AI application used for diagnosis, risk assessment, treatment planning, or outcome prediction in periodontology.
- Outcomes: Diagnostic accuracy, treatment efficacy, patient-reported outcomes.
- Language: English.
2.2.2. Exclusion Criteria
- Study Design: Case reports, case series, narrative reviews and systematic reviews, editorials, letters to the editor, conference papers/presentations.
- Population: Animal studies, in vitro studies.
- Intervention: AI applications not directly related to periodontology.
- Outcomes: Not relevant to clinical practice or patient care.
- Language: Non-English.
2.3. Information Sources and Search
2.4. Selection of Sources of Evidence
2.5. Data Charting Process and Data Items
2.6. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
Characteristics and Results of Sources of Evidence
3.2. Synthesis of Results
3.2.1. Deep Learning Models for Radiographic Assessment of Alveolar Bone Loss
3.2.2. Deep Learning Approaches to Detect Intrabony and Furcation Defects in Periodontal Disease
3.2.3. Automated Gingivitis Diagnosis
3.2.4. Automated Detection of Dental Biofilm, Calculus, and Gingival Inflammation Using Deep Learning
3.2.5. Deep Learning and Machine Learning for Periodontal Disease Detection and Staging
3.2.6. Harnessing Artificial Intelligence for Enhanced Dental Diagnostics and Patient Communication
3.2.7. Other Applications
4. Discussion
4.1. Strengths and Limitations
4.2. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Status Report on Alcohol and Health 2018; World Health Organization: Roma, Italy, 2019. [Google Scholar]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. (Qassim) 2017, 11, 72. [Google Scholar] [PubMed]
- Tichenor, M.; Sridhar, D. Metric partnerships: Global burden of disease estimates within the World Bank, the World Health Organisation and the Institute for Health Metrics and Evaluation. Wellcome Open Res. 2019, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, I.; Duane, B. Periodontal disease has an impact on patients’ quality of life. Evid. Based Dent. 2018, 19, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef]
- Listl, S.; Galloway, J.; Mossey, P.A.; Marcenes, W. Global economic impact of dental diseases. J. Dent. Res. 2015, 94, 1355–1361. [Google Scholar] [CrossRef]
- Könönen, E.; Gursoy, M.; Gursoy, U.K. Periodontitis: A multifaceted disease of tooth-supporting tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Khanagar, S.B.; Al-Ehaideb, A.; Maganur, P.C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H.A.; Sarode, S.C.; Bhandi, S. Developments, application, and performance of artificial intelligence in dentistry—A systematic review. J. Dent. Sci. 2021, 16, 508–522. [Google Scholar] [CrossRef]
- Alam, M.K.; Kanwal, B.; Shqaidef, A.; Alswairki, H.J.; Alfawzan, A.A.; Alabdullatif, A.I.; Aalmunif, A.N.; Aljrewey, S.H.; Alothman, T.A.; Shrivastava, D.; et al. A Systematic Review and Network Meta-Analysis on the Impact of Various Aligner Materials and Attachments on Orthodontic Tooth Movement. J. Funct. Biomater. 2023, 14, 209. [Google Scholar] [CrossRef]
- Ruiz, D.C.; Mureșanu, S.; Du, X.; Elgarba, B.M.; Fontenele, R.C.; Jacobs, R. Unveiling the role of artificial intelligence applied to clear aligner therapy: A scoping review. J. Dent. 2025, 154, 105564. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Algabri, R.; Ibrahim, W.I.; Alhajj, M.N.; Elawady, D. Dental implant planning using artificial intelligence: A systematic review and meta-analysis. J. Prosthet. Dent. 2024. [Google Scholar] [CrossRef] [PubMed]
- Koidou, V.P.; Chatzopoulos, G.S.; Tsalikis, L.; Kaklamanos, E.G. Large Language Models in peri-implant disease: How well do they perform? J. Prosthet. Dent. 2025. [Google Scholar] [CrossRef] [PubMed]
- Dermata, A.; Arhakis, A.; Makrygiannakis, M.A.; Giannakopoulos, K.; Kaklamanos, E.G. Evaluating the evidence-based potential of six large language models in paediatric dentistry: A comparative study on generative artificial intelligence. Eur. Arch. Paediatr. Dent. 2025. [Google Scholar] [CrossRef] [PubMed]
- Chatzopoulos, G.S.; Koidou, V.P.; Tsalikis, L.; Kaklamanos, E.G. Large language models in periodontology: Assessing their performance in clinically relevant questions. J. Prosthet. Dent. 2024. [Google Scholar] [CrossRef]
- Giannakopoulos, K.; Kavadella, A.; Salim, A.A.; Stamatopoulos, V.; Kaklamanos, E.G. Evaluation of the Performance of Generative AI Large Language Models ChatGPT, Google Bard, and Microsoft Bing Chat in Supporting Evidence-Based Dentistry: Comparative Mixed Methods Study. J. Med. Internet Res. 2023, 25, e51580. [Google Scholar] [CrossRef]
- Makrygiannakis, M.A.; Giannakopoulos, K.; Kaklamanos, E.G. Evidence-based potential of generative artificial intelligence large language models in orthodontics: A comparative study of ChatGPT, Google Bard, and Microsoft Bing. Eur. J. Orthod. 2024. [Google Scholar] [CrossRef]
- Jain, S.; Sayed, M.E.; Ibraheem, W.I.; Ageeli, A.A.; Gandhi, S.; Jokhadar, H.F.; AlResayes, S.S.; Alqarni, H.; Alshehri, A.H.; Huthan, H.M.; et al. Accuracy Comparison between Robot-Assisted Dental Implant Placement and Static/Dynamic Computer-Assisted Implant Surgery: A Systematic Review and Meta-Analysis of In Vitro Studies. Medicina 2023, 60, 11. [Google Scholar] [CrossRef]
- Sharifi, G.; Hajibeygi, R.; Zamani, S.A.M.; Easa, A.M.; Bahrami, A.; Eshraghi, R.; Moafi, M.; Ebrahimi, M.J.; Fathi, M.; Mirjafari, A.; et al. Diagnostic performance of neural network algorithms in skull fracture detection on CT scans: A systematic review and meta-analysis. Emerg. Radiol. 2025, 32, 97–111. [Google Scholar] [CrossRef]
- Khadivi, G.; Akhtari, A.; Sharifi, F.; Zargarian, N.; Esmaeili, S.; Ahsaie, M.G.; Shahbazi, S. Diagnostic accuracy of artificial intelligence models in detecting osteoporosis using dental images: A systematic review and meta-analysis. Osteoporos. Int. 2025, 36, 1–19. [Google Scholar] [CrossRef]
- Rahman, H.; Khan, A.R.; Sadiq, T.; Farooqi, A.H.; Khan, I.U.; Lim, W.H. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography 2023, 9, 2158–2189. [Google Scholar] [CrossRef]
- Xiang, B.; Lu, J.; Yu, J. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis. J. Dent. 2024, 146, 105064. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Implement. 2021, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, G.; Awawdeh, M.; Farook, F.F.; Aljohani, M.; Aldhafiri, R.M.; Aldhoayan, M. Artificial intelligence (AI) diagnostic tools: Utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically—A retrospective study. BMC Oral Health 2022, 22, 399. [Google Scholar] [CrossRef]
- Amasya, H.; Jaju, P.P.; Ezhov, M.; Gusarev, M.; Atakan, C.; Sanders, A.; Manulius, D.; Golitskya, M.; Shrivastava, K.; Singh, A. Development and validation of an artificial intelligence software for periodontal bone loss in panoramic imaging. Int. J. Imaging Syst. Technol. 2023, 34, e22973. [Google Scholar] [CrossRef]
- Kurt Bayrakdar, S.; Çelik, Ö.; Bayrakdar, İ.Ş.; Orhan, K.; Bilgir, E.; Odabaş, A.; Aslan, A.F. Success of Artificial Intelligence System in Determining Alveolar Bone Loss from Dental Panoramic Radiography Images. Cumhur. Dent. J. 2020, 23, 4. [Google Scholar]
- Cerda Mardini, D.; Cerda Mardini, P.; Vicuña Iturriaga, D.P.; Ortuño Borroto, D.R. Determining the efficacy of a machine learning model for measuring periodontal bone loss. BMC Oral Health 2024, 24, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, H.J.; Lee, S.J.; Yong, T.H.; Shin, N.Y.; Jang, B.G.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci. Rep. 2020, 10, 7531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, J.; Chang, M.F.; Angelov, N.; Hsu, C.Y.; Meng, H.W.; Sheng, S.; Glick, A.; Chang, K.; He, Y.-R.; Lin, Y.-B.; et al. Application of deep machine learning for the radiographic diagnosis of periodontitis. Clin. Oral Investig. 2022, 26, 6629–6637. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Wu, Y.F.; Aung, L.M.; Ngo, S.T.; Lin, Y.-M.; Chang, W.-J. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J. Dent. Sci. 2023, 18, 1301–1309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, F.; Liu, Q.; Guo, Y.; Wu, J.; Zhu, H.; Xie, R.; Liu, Q.; Deng, L.; Song, L. Convolutional neural networks combined with classification algorithms for the diagnosis of periodontitis. Oral Radiol. 2024, 40, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Danks, R.P.; Bano, S.; Orishko, A.; Tan, H.J.; Sancho, F.M.; Danks, R.P.; D’aIuto, F. Automating Periodontal bone loss measurement via dental landmark localisation. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1189–1199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dujic, H.; Meyer, O.; Hoss, P.; Wölfle, U.C.; Wülk, A.; Meusburger, T.; Meier, L.; Gruhn, V.; Hesenius, M.; Hickel, R.; et al. Automatized Detection of Periodontal Bone Loss on Periapical Radiographs by Vision Transformer Networks. Diagnostics 2023, 13, 3562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guler Ayyildiz, B.; Karakis, R.; Terzioglu, B.; Ozdemir, D. Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages. Dentomaxillofac. Radiol. 2024, 53, 32–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoss, P.; Meyer, O.; Wölfle, U.C.; Wülk, A.; Meusburger, T.; Meier, L.; Hickel, R.; Gruhn, V.; Hesenius, M.; Hickel, R.; et al. Detection of Periodontal Bone Loss on Periapical Radiographs—A Diagnostic Study Using Different Convolutional Neural Networks. J. Clin. Med. 2023, 12, 7189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, L.; Chen, D.; Cao, Z.; Zhu, F.; Chen, D.; Zhu, H. A two-stage deep learning architecture for radiographic staging of periodontal bone loss. BMC Oral Health 2022, 22, 106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jundaeng, J.; Chamchong, R.; Nithikathkul, C. Advanced AI-assisted panoramic radiograph analysis for periodontal prognostication and alveolar bone loss detection. Front. Dent. Med. 2025, 5, 1509361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.; Lee, H.S.; Song, I.S.; Jung, K.H. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 2019, 9, 17615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, Z.; Ouyang, H.; Cao, Y.; Huang, T.; Ahn, E.; Zhang, M.; Liu, H. Automated periodontitis bone loss diagnosis in panoramic radiographs using a bespoke two-stage detector. Comput. Biol. Med. 2023, 152, 106374. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.; Faria, M.; Giraldi, G.; Bastos, L.; Conci, A. Do Radiographic Assessments of Periodontal Bone Loss Improve with Deep Learning Methods for Enhanced Image Resolution? Sensors 2021, 21, 2013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abu, P.A.R.; Mao, Y.C.; Lin, Y.J.; Chao, C.-K.; Lin, Y.-H.; Wang, B.-S.; Chen, C.-A.; Chen, S.-L.; Chen, T.-Y.; Li, K.-C. Precision Medicine Assessment of the Radiographic Defect Angle of the Intrabony Defect in Periodontal Lesions by Deep Learning of Bitewing Radiographs. Bioengineering 2025, 12, 43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karacaoglu, F.; Kolsuz, M.E.; Bagis, N.; Evli, C.; Orhan, K. Development and validation of intraoral periapical radiography-based machine learning model for periodontal defect diagnosis. Proc. Inst. Mech. Eng. H 2023, 237, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Bayrakdar, S.; Bayrakdar, İ.Ş.; Yavuz, M.B.; Sali, N.; Çelik, Ö.; Köse, O.; Saylan, B.C.U.; Kuleli, B.; Jagtap, R.; Orhan, K. Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: A retrospective study. BMC Oral Health 2024, 24, 155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mao, Y.C.; Huang, Y.C.; Chen, T.Y.; Chuo, Y.; Lin, Y.-J.; Chan, M.-L.; Chen, C.-A.; Li, K.-C.; Abu, P.A.R.; Huang, Y.-C.; et al. Deep Learning for Dental Diagnosis: A Novel Approach to Furcation Involvement Detection on Periapical Radiographs. Bioengineering 2023, 10, 802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piroonsan, K.; Pimolbutr, K.; Tansriratanawong, K. Classifying Three-Wall Intrabony Defects from Intraoral Radiographs Using Deep Learning-Based Convolutional Neural Network Models. Eur. J. Dent. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Talaat, W.; AlKawas, S.; Al-Rawi, N.; Reddy, S.; Hamdoon, Z.; Kheder, W.; Acharya, A.; Ozsahin, D.U.; David, L.R. Application of artificial intelligence-based detection of furcation involvement in mandibular first molar using cone beam tomography images- a preliminary study. BMC Oral Health 2024, 24, 1476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vilkomir, K.; Phen, C.; Baldwin, F.; Cole, J.; Herndon, N.; Zhang, W. Classification of mandibular molar furcation involvement in periapical radiographs by deep learning. Imaging Sci. Dent. 2024, 54, 257–263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Guo, E.; Liu, X.; Li, W.; Zhao, H.; Yang, J.; Zhang, X.; Wu, W. Enhancing furcation involvement classification on panoramic radiographs with vision transformers. BMC Oral Health 2025, 25, 153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ariandi, V.; Yanto, M.; Jamhur, A.I.; Firdaus, F.; Afira, R. Optimization artificial neural network classification analysis model diagnosis Gingivitis disease. Indones. J. Electr. Eng. Comput. Sci. 2023, 29, 1648–1656. [Google Scholar] [CrossRef]
- Alalharith, D.M.; Alharthi, H.M.; Alghamdi, W.M.; Alsenbel, Y.M.; Aslam, N.; Khan, I.U.; Shahin, S.Y.; Dianišková, S.; Alhareky, M.S.; Barouch, K.K. A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster Region-Based Convolutional Neural Networks. Int. J. Environ. Res. Public Health. 2020, 17, 8447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Chen, Y.; Sun, W.; Brown, M.; Zhang, X.; Wang, S.; Miao, L. A Gingivitis Identification Method Based on Contrast-Limited Adaptive Histogram Equalization, Gray-Level Co-Occurrence Matrix, and Extreme Learning Machine. Int. J. Imaging Syst. Technol. 2019, 29, 77–82. [Google Scholar] [CrossRef]
- Li, W.; Guo, E.; Zhao, H.; Li, Y.; Miao, L.; Liu, C.; Sun, W. Evaluation of Transfer Ensemble Learning-Based Convolutional Neural Network Models for the Identification of Chronic Gingivitis from Oral Photographs. BMC Oral Health. 2024, 24, 814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Liang, Y.; Zhang, X.; Liu, C.; He, L.; Miao, L.; Sun, W. A Deep Learning Approach to Automatic Gingivitis Screening Based on Classification and Localization in RGB Photos. Sci. Rep. 2021, 11, 16831. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wen, C.; Bai, X.; Yang, J.; Li, S.; Wang, X.; Yang, D. Deep Learning-Based Approach: Automated Gingival Inflammation Grading Model Using Gingival Removal Strategy. Sci. Rep. 2024, 14, 19780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Cheng, Y.; Song, Y.; Cai, D.; Zhang, N. Oral Screening of Dental Calculus, Gingivitis, and Dental Caries Through Segmentation on Intraoral Photographic Images Using Deep Learning. BMC Oral Health. 2024, 24, 1287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chau, R.C.W.; Li, G.H.; Tew, I.M.; Thu, K.M.; McGrath, C.; Lo, W.L.; Ling, W.K.; Hsung, R.T.; Lam, W.Y.H. Accuracy of Artificial Intelligence-Based Photographic Detection of Gingivitis. Int. Dent. J. 2023, 73, 724–730. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chau, R.C.W.; Cheng, A.C.C.; Mao, K.; Thu, K.M.; Ling, Z.; Tew, I.M.; Chang, T.H.; Tan, H.J.; McGrath, C.; Lo, W.L.; et al. External Validation of an AI mHealth Tool for Gingivitis Detection Among Older Adults at Daycare Centers: A Pilot Study. Int. Dent. J. 2025, 75, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Andrade, K.M.; Silva, B.P.M.; de Oliveira, L.R.; Cury, P.R. Automatic Dental Biofilm Detection Based on Deep Learning. J. Clin. Periodontol. 2023, 50, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, Y.; Jeong, J.S.; Perinpanayagam, H.; Kum, K.Y.; Gu, Y. DeepPlaq: Dental Plaque Indexing Based on Deep Neural Networks. Clin. Oral Investig. 2024, 28, 534. [Google Scholar] [CrossRef] [PubMed]
- Nantakeeratipat, T.; Apisaksirikul, N.; Boonrojsaree, B.; Boonkijkullatat, S.; Simaphichet, A. Automated Machine Learning for Image-Based Detection of Dental Plaque on Permanent Teeth. Front. Dent. Med. 2024, 5, 1507705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez-Pedraza, A.; Salazar-Colores, S.; Cardenas-Valle, C.; Terven, J.; González-Barbosa, J.J.; Ornelas-Rodriguez, F.J.; Hurtado-Ramos, J.B.; Ramirez-Pedraza, R.; Córdova-Esparza, D.M.; Romero-González, J.A. Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index. Diagnostics 2025, 15, 231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Zhang, R.; Wei, X.; Wang, L.; Wu, P.; Yao, Q. Deep Learning and Sub-Band Fluorescence Imaging-Based Method for Caries and Calculus Diagnosis Embeddable on Different Smartphones. Biomed. Opt. Express. 2023, 14, 866–882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Zhang, R.; Wei, X.; Wang, L.; Xu, W.; Yao, Q. Machine Learning-Based Automatic Identification and Diagnosis of Dental Caries and Calculus Using Hyperspectral Fluorescence Imaging. Photodiagnosis Photodyn. Ther. 2023, 41, 103217. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Xu, W.; Guo, Y.; Xu, M.; Huang, S.; Dai, D.; Lu, C.; Li, S.; Lin, J. Identification of Gingival Inflammation Surface Image Features Using Intraoral Scanning and Deep Learning. Int. Dent. J. 2025, 75, 2104–2114. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Hao, A.; Li, S.; Wang, Y.; Xia, B. Deep Learning-Based Dental Plaque Detection on Primary Teeth: A Comparison with Clinical Assessments. BMC Oral Health. 2020, 20, 141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yüksel, B.; Özveren, N.; Yeşil, Ç. Evaluation of Dental Plaque Area with Artificial Intelligence Model. Niger. J. Clin. Pract. 2024, 27, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.J.; Lin, Y.T.; Lin, Y.J.; Tseng, A.Y.; Lin, C.Y.; Lo, L.T.; Chen, T.Y.; Chen, S.L.; Chen, C.A.; Li, K.C.; et al. Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs. Bioengineering 2024, 11, 675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orhan, K.; Aktuna Belgin, C.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Önder, M.; Ezhov, M.; Shamshiev, M.; et al. Determining the Reliability of Diagnosis and Treatment Using Artificial Intelligence Software with Panoramic Radiographs. Imaging Sci. Dent. 2023, 53, 199–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shon, H.S.; Kong, V.; Park, J.S.; Jang, W.; Cha, E.J.; Kim, S.Y.; Lee, E.Y.; Kang, T.G.; Kim, K.A. Deep Learning Model for Classifying Periodontitis Stages on Dental Panoramic Radiography. Appl. Sci. 2022, 12, 8500. [Google Scholar] [CrossRef]
- Ertaş, K.; Pence, I.; Cesmeli, M.S.; Ay, Z.Y. Determination of the Stage and Grade of Periodontitis According to the Current Classification of Periodontal and Peri-Implant Diseases and Conditions (2018) Using Machine Learning Algorithms. J. Periodontal Implant Sci. 2023, 53, 38–53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erturk, M.; Öziç, M.Ü.; Tassoker, M. Deep Convolutional Neural Network for Automated Staging of Periodontal Bone Loss Severity on Bite-Wing Radiographs: An Eigen-CAM Explainability Mapping Approach. J. Imaging Inform. Med. 2025, 38, 556–575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Diagnosis and Prediction of Periodontally Compromised Teeth Using a Deep Learning-Based Convolutional Neural Network Algorithm. J. Periodontal Implant Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, T.; Chen, L.; Sun, Q. Deep Learning Method to Automatically Diagnose Periodontal Bone Loss and Periodontitis Stage in Dental Panoramic Radiograph. J. Dent. 2024, 150, 105373. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, K.; Zhao, D.; He, Y.; Li, Y.; Li, Z.; Guo, X.; Zhang, C.; Li, W.; Wang, S. Deep Learning for Staging Periodontitis Using Panoramic Radiographs. Oral Dis. 2025. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.; Proença, L.; Morgado, M.; Mendes, J.J.; Botelho, J. Accuracy of Panoramic Radiograph for Diagnosing Periodontitis Comparing to Clinical Examination. J. Clin. Med. 2020, 9, 2313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Gao, L.; Jiang, Y.; Xu, T.; Peng, L.; Zhao, X.; Yang, M.; Li, J.; Liang, S. AI-Aided Diagnosis of Periodontitis in Oral X-ray Images. Displays 2025, 86, 102895. [Google Scholar] [CrossRef]
- Vigil, M.S.A.; Gowri, V.; Ramesh, S.S.S.; Praba, M.S.B.; Sabitha, P. ADGRU: Adaptive DenseNet with Gated Recurrent Unit for Automatic Diagnosis of Periodontal Bone Loss and Stage Periodontitis with Tooth Segmentation Mechanism. Clin. Oral Investig. 2024, 28, 614. [Google Scholar] [CrossRef] [PubMed]
- Ozden, F.O.; Özgönenel, O.; Özden, B.; Aydogdu, A. Diagnosis of Periodontal Diseases Using Different Classification Algorithms: A Preliminary Study. Niger. J. Clin. Pract. 2015, 18, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Alanazi, N.H.; Alshehri, A.D.A.; Chowdhury, F. Accuracy of AI Algorithms in Diagnosing Periodontal Disease Using Intraoral Images. J. Pharm. Bioallied Sci. 2024, 16, S583–S585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aykol-Sahin, G.; Yucel, O.; Eraydin, K.; Aygün, E.; Dündar, D. A Comparative Study of Neural Networks for Classification of Periodontal Disease Based on Radiographic Features. Oral Radiol. 2024, 44, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Gunpinar, S.; Sevinc, A.S.; Akgül, Z.; Tasmektepligil, A.A.; Gunpinar, E. Patient-specific gingival recession system based on periodontal disease prediction. Int. J. Comput. Dent. 2025, 28, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Bayrakdar, S.; Uğurlu, M.; Yavuz, M.B.; Sali, N.; Bayrakdar, İ.Ş.; Çelik, Ö.; Köse, O.; Beklen, A.; Uzun Saylan, B.C.; Jagtap, R.; et al. Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: A retrospective study. Quintessence Int. 2023, 54, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Kearney, V.P.; Yansane, A.M.; Brandon, R.G.; Vaderhobli, R.; Lin, G.H.; Hekmatian, H.; Deng, W.; Joshi, N.; Bhandari, H.; Sadat, A.S.; et al. A generative adversarial inpainting network to enhance prediction of periodontal clinical attachment level. J. Dent. 2022, 123, 104211. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.N. Investigation of the super-resolution algorithm for the prediction of periodontal disease in dental X-ray radiography. J. Korean Soc. Radiol. 2021, 15, 153–158. [Google Scholar]
- Motmaen, I.; Xie, K.; Schönbrunn, L.; Berens, J.; Grunert, K.; Plum, A.M.; Raufeisen, J.; Ferreira, A.; Hermans, A.; Egger, J.; et al. Insights into predicting tooth extraction from panoramic dental images: Artificial intelligence vs. dentists, Clin. Oral Investig. 2024, 28, 381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ossowska, A.; Kusiak, A.; Świetlik, D. Evaluation of the progression of periodontitis with the use of neural networks. J. Clin. Med. 2022, 11, 4667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, K.T.; Le, B.M.; Li, M.; Almeida, F.T.; Major, P.W.; Kaipatur, N.R.; Lou, E.H.M.; Punithakumar, K.; Le, L.H. Localization of cementoenamel junction in intraoral ultrasonographs with machine learning. J. Dent. 2021, 112, 103752. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Jia, X.; Zhan, L.; Gao, S.; Zhang, Q.; Huang, X. Automatic tooth periodontal ligament segmentation of cone beam computed tomography based on instance segmentation network. Heliyon 2024, 10, e24097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- You, F.T.; Lin, P.C.; Huang, C.L.; Wu, J.H.; Kabasawa, Y.; Chen, C.C.; Huang, H.L. Artificial intelligence with counseling on the treatment outcomes and quality of life in periodontitis patients. J. Periodontol. 2024. [Google Scholar] [CrossRef]
- Macrì, M.; D’Albis, V.; D’Albis, G.; Forte, M.; Capodiferro, S.; Favia, G.; Alrashadah, A.O.; García, V.D.; Festa, F. The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review. Bioengineering 2024, 11, 778. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Motamedian, S.R.; Pirayesh, Z.; Haiat, A.; Zahedrozegar, S.; Mahmoudinia, E.; Rohban, M.H.; Krois, J.; Lee, J.H.; Schwendicke, F. Deep learning in periodontology and oral implantology: A scoping review. J. Periodontal Res. 2022, 57, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Mallineni, S.K.; Sethi, M.; Punugoti, D.; Kotha, S.B.; Alkhayal, Z.; Mubaraki, S.; Almotawah, F.N.; Kotha, S.L.; Sajja, R.; Nettam, V.; et al. Artificial Intelligence in Dentistry: A Descriptive Review. Bioengineering 2024, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, J.; Zhao, W.; Matinlinna, J.P.; Burrow, M.F.; Tsoi, J.K.H. Artificial intelligence in dentistry-A review. Front. Dent. Med. 2023, 4, 1085251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Database | Search Strategy | Hits |
---|---|---|
PubMed-MEDLINE | ((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal) | 3195 |
Cochrane Central Register of Controlled Trials | ((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal) in Title Abstract Keyword—(Word variations have been searched) | 46 |
Cochrane Database of Systematic Reviews | ((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal) in Title Abstract Keyword—(Word variations have been searched) | 0 |
Scopus | TITLE-ABS-KEY((ai OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (periodontology OR periodontics OR periodontal AND disease OR periodontitis OR periodontium OR periodontal) | 3370 |
Web of Science™ Core Collection | ((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal) (Topic) and Preprint Citation Index (Exclude—Database) Timespan: All years. Search language = Auto | 824 |
ProQuest Dissertations and Theses Global | title(((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal)) OR abstract(((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR periodontal disease OR periodontitis OR periodontium OR periodontal)) Filters activated: Full text | 29 |
Topic | AI Application Focus | Key AI Methodologies/Models | Key Findings/Outcomes |
---|---|---|---|
AI and Radiographic Assessment of Alveolar Bone Loss | Alveolar Bone Loss Detection and Classification | CNNs (VGG16, GoogLeNet InceptionV3), Mask R-CNN, Cascade R-CNN, YOLOv5, U-Net, Ensemble Models |
|
Deep Learning for Intrabony and Furcation Defects | Detection and Classification of Bone Defects | YOLOv8, SVM, U-Net, CNNs (InceptionV3, ResNet), Vision Transformer (ViT) |
|
Automated Gingivitis Diagnosis | Gingival Inflammation Detection and Grading | ANN, Faster R-CNN, ELM, ConvNets (ResNet, GoogLeNet), Multi-Task Learning CNN, DenseNet, Oral-Mamba |
|
Automated Detection of Biofilm, Calculus, and Gingival Inflammation | Detection and Quantification of Dental Biofilm, Calculus, and Gingival Inflammation | U-Net, YOLO, SAM, DeepPlaq, AutoML, Hybrid CNNs, GC-U-Net |
|
Deep Learning and Machine Learning for Periodontal Disease Detection and Staging | Periodontitis Detection, Staging, and Prediction | Deep Learning Frameworks, Machine Learning (Decision Tree, SVM, KNN), YOLOv8, Ensemble Models, AD-GRU, ANN |
|
Harnessing AI for Enhanced Dental Diagnostics and Patient Communication | Automated Gum Tissue Analysis and Feature Identification | CNNs (ResNet50), YOLOv5x |
|
Other Applications | Diverse Applications | GANs, Super-Resolution Algorithms, ResNet50, ANN, CNNs, Mask R-CNN |
|
AI Model/Approach | Primary Application | Performance |
---|---|---|
ANN with Fuzzy Logic | Enhanced diagnosis | 94.2% correlation |
Faster R-CNN | Detecting gingivitis in orthodontic patients | 77.12% accuracy, 88.02% precision for inflammation |
ELM (Image Processing) | Automated diagnosis | 74% accuracy, 75% sensitivity |
ResNet/GoogLeNet | Chronic gingivitis identification | ResNet AUC 97% (highest) |
Multi-Task Learning CNN | Screening for gingivitis, plaque, calculus | Gingivitis AUC 87.11% |
DenseNet CNN (Grading) | Assessing inflammation grade | 73.68–79.22% accuracy for 5 grades |
Oral-Mamba | Segmenting for caries, calculus, gingivitis | 0.83 accuracy for gingivitis segmentation |
AI System (Plaque Control) | Visual plaque control advice | 0.92 sensitivity, 0.94 specificity |
GumAI (Smartphone-based) | Gingivitis detection in community settings | 0.85 accuracy, 0.93 sensitivity |
Oral Health Indicator | AI Models/Methods Used | Key Findings/Impact |
---|---|---|
Dental Biofilm (Plaque) | U-Net, YOLOv8, DeepPlaq, Vertex AI AutoML, YOLOv9/v10/v11, CNNs | High accuracy in detection, segmentation, and indexing; potential for non-invasive and early detection. |
Dental Calculus | Fluorescence imaging with 2D-3D hybrid CNN, YOLOv8, Diagnocat AI | High accuracy in detection across various imaging types (X-rays, fluorescence); enhances efficiency. |
Gingival Inflammation | Faster R-CNN, ELM, ResNet, GoogLeNet, Multi-Task CNN, DenseNet CNN, Oral-Mamba, GumAI, GC-U-Net | High accuracy in detection, classification, grading, and localization; comparable to or exceeding human experts. |
AI Model/Approach | Data Used | Key Application | Performance Highlights |
---|---|---|---|
Deep Learning Framework | Panoramic X-rays | Classify periodontitis stages (2018 classification) | 92.9% accuracy, 80.7% recall, 72.4% precision |
ML Algorithms (Decision Tree, Random Forest, k-NN, ResNet50 + SVM) | Clinical data, Panoramic X-rays | Simplify periodontitis staging/grading | Decision Tree and k-NN: 98.6% accuracy (staging clinical data); ResNet50 + SVM: 88.2% accuracy (staging radiographic) |
YOLOv8 | Bite-wing X-rays | Stage periodontal bone loss | 86.10% accuracy, 84.79% precision, 82.35% recall |
Deep CNN algorithm | Periapical radiographs | Diagnose periodontal compromised teeth; predict extraction | 81.0% accuracy (premolars), 76.7% (molars) for diagnosis |
Deep Learning Ensemble (YOLOv8, Mask R-CNN, TransUNet) | Panoramic radiographs | Tooth position, tissue segmentation, bone loss, periodontitis stage prediction | 89.45% overall diagnostic accuracy; 0.832 Pearson Correlation with expert diagnosis |
Mask R-CNN, U-Net | Panoramic images | Periodontitis staging (bone loss proportion) | 90.73% accuracy in staging |
Adaptive DenseNet with GRU (AD-GRU) optimized by RRKOA | Dental images | Detect early periodontal bone loss, determine periodontitis stage | 94.45% accuracy |
SVM, Decision Tree, ANN | Risk factors, periodontal measurements, radiographic bone loss | Classify periodontal diseases | SVM and Decision Tree: 98% accuracy |
AI Algorithms (unspecified) | Intraoral images | Diagnose periodontal disease | 87% accuracy, 90% sensitivity, 84% specificity (comparable to specialists) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzopoulos, G.S.; Koidou, V.P.; Tsalikis, L.; Kaklamanos, E.G. Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review. Medicina 2025, 61, 1066. https://doi.org/10.3390/medicina61061066
Chatzopoulos GS, Koidou VP, Tsalikis L, Kaklamanos EG. Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review. Medicina. 2025; 61(6):1066. https://doi.org/10.3390/medicina61061066
Chicago/Turabian StyleChatzopoulos, Georgios S., Vasiliki P. Koidou, Lazaros Tsalikis, and Eleftherios G. Kaklamanos. 2025. "Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review" Medicina 61, no. 6: 1066. https://doi.org/10.3390/medicina61061066
APA StyleChatzopoulos, G. S., Koidou, V. P., Tsalikis, L., & Kaklamanos, E. G. (2025). Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review. Medicina, 61(6), 1066. https://doi.org/10.3390/medicina61061066