Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids
Abstract
:1. Introduction
2. Lipases and Their Sources
2.1. Plant Lipases
2.2. Animal Lipases
2.3. Marine Lipases from Various Microorganisms
2.3.1. Microbial Lipases
2.3.2. Microalgae Lipases
3. Lipase Commercial Market and Applications
3.1. The Lipase Commercial Market
3.2. Marine Lipase Applications
4. Omega-3 Enrichment Techniques
4.1. Urea Precipitation
4.2. Supercritical Fluid Extraction
4.3. Molecular Distillation
4.4. Enzymatic Enrichment Method
5. Marine Lipases in Enriching Omega-3
6. Enzyme Immobilization for Advancing the Enrichment of Omega-3 Fatty Acids
6.1. Physical Methods
6.2. Chemical Methods
Covalent Bonding-Based Immobilization of Lipase for the Enrichment of Omega-3 PUFAs
7. Concluding Remarks and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satpute, S.K.; Banat, I.M.; Dhakephalkar, P.K.; Banpurkar, A.G.; Chopade, B.A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010, 28, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Debashish, G.; Malay, S.; Barindra, S.; Joydeep, M. Marine enzymes. Mar. Biotechnol. I 2005, 96, 189–218. [Google Scholar]
- Maneerat, S.; Phetrong, K. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol. 2007, 29, 781–791. [Google Scholar]
- Li, S.; Tan, E.C.; Dutta, A.; Snowden-Swan, L.J.; Thorson, M.R.; Ramasamy, K.K.; Bartling, A.W.; Brasington, R.; Kass, M.D.; Zaimes, G.G. Techno-economic analysis of sustainable biofuels for marine transportation. Environ. Sci. Technol. 2022, 56, 17206–17214. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Niyonzima, F.N.; More, V.S.; Nsanganwimana, F.; Rao, A.S.; Nair, A.; Anantharaju, K.; More, S.S. Microbial enzymes used in textile industry. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 649–684. [Google Scholar]
- Choudhury, P.; Bhunia, B. Industrial application of lipase: A review. Biopharm. J. 2015, 1, 41–47. [Google Scholar]
- Navvabi, A.; Razzaghi, M.; Fernandes, P.; Karami, L.; Homaei, A. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem. 2018, 70, 61–70. [Google Scholar] [CrossRef]
- Dokania, P.; Fopase, R.; Swagathnath, G.; Vivekanand; Gupta, K.; Pabari, P.; Sahoo, K.K.; Sarkar, A. Future Marine Microbial Products for the Pharmaceuticals Industry. In Microbial Products for Future Industrialization; Springer: Berlin/Heidelberg, Germany, 2023; pp. 199–221. [Google Scholar]
- Deng, D.; Zhang, Y.; Sun, A.; Liang, J.; Hu, Y. Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol. Appl. Biochem. Biotechnol. 2016, 179, 75–93. [Google Scholar] [CrossRef] [PubMed]
- López, E.N.; Callejón, M.J.J.; Sánchez, M.D.M.; Moreno, P.A.G.; Medina, A.R. Obtaining eicosapentaenoic acid-enriched polar lipids from microalga Nannochloropsis sp. by lipase-catalysed hydrolysis. Algal Res. 2023, 71, 103073. [Google Scholar] [CrossRef]
- MarketsandMarkets. Omega-3 Market by Type (DHA, EPA, AND ALA), Application (Dietary Supplements, Functional Foods & Beverages, Pharmaceuticals, Infant Formula, and Pet Food & Feed), Source (Marine and Plant), and Region–Global Forecast to 2029; Market Research Report. Available online: https://www.marketsandmarkets.com/Market-Reports/omega-3-omega-6-227.html (accessed on 23 February 2024).
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef]
- Gupta, A.; Barrow, C.J.; Puri, M. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnol. Adv. 2012, 30, 1733–1745. [Google Scholar] [CrossRef]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological production of omega-3 fatty acids: Current status and future perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Alhattab, M.; Moorthy, L.S.; Patel, D.; Franco, C.M.; Puri, M. Oleaginous Microbial Lipids’ Potential in the Prevention and Treatment of Neurological Disorders. Mar. Drugs 2024, 22, 80. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Binkoski, A.E. Polyunsaturated fatty acids and cardiovascular health. Nutr. Rev. 2004, 62, 414–426. [Google Scholar] [CrossRef]
- Paschos, G.; Magkos, F.; Panagiotakos, D.; Votteas, V.; Zampelas, A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 2007, 61, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Holub, D.J.; Holub, B.J. Omega-3 fatty acids from fish oils and cardiovascular disease. Mol. Cell. Biochem. 2004, 263, 217–225. [Google Scholar] [CrossRef]
- Liu, J.; Ma, D.W. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients 2014, 6, 5184–5223. [Google Scholar] [CrossRef]
- Calder, P.C. Health benefits of omega-3 fatty acids. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 25–53. [Google Scholar]
- Lien, E.; Richard, C.; Hoffman, D. DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukot. Essent. Fat. Acids 2018, 128, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Goed. Global Organization For EPA and DHA Omega-3. 2024. Available online: https://goedomega3.com/about (accessed on 9 March 2024).
- Ghelichi, S.; Hajfathalian, M.; García-Moreno, P.J.; Yesiltas, B.; Moltke-Sørensen, A.-D.; Jacobsen, C. Food enrichment with omega-3 polyunsaturated fatty acids. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 395–425. [Google Scholar]
- Liu, Y.; Dave, D. Recent progress on immobilization technology in enzymatic conversion of marine by-products to concentrated omega-3 fatty acids. Green Chem. 2022, 24, 1049–1066. [Google Scholar] [CrossRef]
- Let, M.B.; Jacobsen, C.; Meyer, A.S. Lipid oxidation in milk, yoghurt, and salad dressing enriched with neat fish oil or pre-emulsified fish oil. J. Agric. Food Chem. 2007, 55, 7802–7809. [Google Scholar] [CrossRef] [PubMed]
- Serfert, Y.; Drusch, S.; Schwarz, K. Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chem. 2009, 113, 1106–1112. [Google Scholar] [CrossRef]
- Jain, P.; Minhas, A.K.; Shukla, S.; Puri, M.; Barrow, C.J.; Mandal, S. Bioprospecting indigenous marine microalgae for polyunsaturated fatty acids under different media conditions. Front. Bioeng. Biotechnol. 2022, 10, 842797. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, U.N. Omega-3 fatty acid concentrates: Nutritional aspects and production technologies. Trends Food Sci. Technol. 1998, 9, 230–240. [Google Scholar] [CrossRef]
- Puri, M.; Barrow, C.J.; Verma, M.L. Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol. 2013, 31, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: Application in Cellobiose Hydrolysis. Bioresour. Technol. 2013, 135, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.-S. Enzyme immobilization technologies and industrial applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
- Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Javadi, A.; Dowlati, S.; Shourni, S.; Rusli, S.; Eckert, K.; Miller, R.; Kraume, M. Enzymatic hydrolysis of triglycerides at the water–oil interface studied via interfacial rheology analysis of lipase adsorption layers. Langmuir 2021, 37, 12919–12928. [Google Scholar] [CrossRef] [PubMed]
- Hari Krishna, S.; Karanth, N. Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catal. Rev. 2002, 44, 499–591. [Google Scholar] [CrossRef]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef] [PubMed]
- Bordes, F.; Barbe, S.; Escalier, P.; Mourey, L.; André, I.; Marty, A.; Tranier, S. Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys. J. 2010, 99, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 2002, 6, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Mounguengui, R.W.M.; Brunschwig, C.; Baréa, B.; Villeneuve, P.; Blin, J. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog. Energy Combust. Sci. 2013, 39, 441–456. [Google Scholar] [CrossRef]
- Sundaramahalingam, M.; Amrutha, C.; Sivashanmugam, P.; Rajeshbanu, J. An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech 2021, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Chakravorty, D.; Dubey, V.K.; Patra, S. An insight into plant lipase research–challenges encountered. Protein Expr. Purif. 2014, 95, 13–21. [Google Scholar] [CrossRef]
- Kurtovic, I.; Marshall, S.N.; Zhao, X.; Simpson, B.K. Lipases from mammals and fishes. Rev. Fish. Sci. 2009, 17, 18–40. [Google Scholar] [CrossRef]
- Pahoja, V.M.; Sethar, M.A. A review of enzymatic properties of lipase in plants, animals and microorganisms. J. Appl. Sci. 2002, 2, 474–484. [Google Scholar]
- Kheadr, E.; Vuillemard, J.C.; El-Deeb, S. Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. J. Food Sci. 2002, 67, 485–492. [Google Scholar] [CrossRef]
- Kiran, K.; Babu, C.S.; Divakar, S. Thermostability of porcine pancreas lipase in non-aqueous media. Process Biochem. 2001, 36, 885–892. [Google Scholar] [CrossRef]
- Mendes, A.A.; Oliveira, P.C.; de Castro, H.F. Properties and biotechnological applications of porcine pancreatic lipase. J. Mol. Catal. B Enzym. 2012, 78, 119–134. [Google Scholar] [CrossRef]
- Reetz, M.T. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Factories 2020, 19, 169. [Google Scholar]
- Treichel, H.; De Oliveira, D.; Mazutti, M.A.; Di Luccio, M.; Oliveira, J.V. A review on microbial lipases production. Food Bioprocess Technol. 2010, 3, 182–196. [Google Scholar] [CrossRef]
- Griebeler, N.; Polloni, A.E.; Remonatto, D.; Arbter, F.; Vardanega, R.; Cechet, J.L.; Di Luccio, M.; de Oliveira, D.; Treichel, H.; Cansian, R.L. Isolation and screening of lipase-producing fungi with hydrolytic activity. Food Bioprocess Technol. 2011, 4, 578–586. [Google Scholar] [CrossRef]
- Wang, L.; Chi, Z.; Wang, X.; Liu, Z.; Li, J. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol. 2007, 57, 495–501. [Google Scholar] [CrossRef]
- Tokak, S.; Kiliç, I.H.; Yalçin, H.T.; Duran, T. Detection of extracellular lipases and genotypic identification from yeast causing spoilage of some dairy products produced in Gaziantep. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Derg. 2019, 22, 206–211. [Google Scholar] [CrossRef]
- Cardoso, V.M.; Borelli, B.M.; Lara, C.A.; Soares, M.A.; Pataro, C.; Bodevan, E.C.; Rosa, C.A. The influence of seasons and ripening time on yeast communities of a traditional Brazilian cheese. Food Res. Int. 2015, 69, 331–340. [Google Scholar] [CrossRef]
- Abu, M.L.; Nooh, H.M.; Oslan, S.N.; Salleh, A.B. Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondii strain SO using response surface methodology. BMC Biotechnol. 2017, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Tóth, R.; Alonso, M.F.; Bain, J.M.; Vágvölgyi, C.; Erwig, L.-P.; Gácser, A. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response. Front. Microbiol. 2015, 6, 156578. [Google Scholar] [CrossRef] [PubMed]
- Kuncharoen, N.; Techo, S.; Savarajara, A.; Tanasupawat, S. Identification and lipolytic activity of yeasts isolated from foods and wastes. Mycology 2020, 11, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.; El-Baz, A.; Shetaia, Y.; Sorour, N.M. Biosynthesis of polyunsaturated fatty acids by two newly cold-adapted Egyptian marine yeast. 3 Biotech 2021, 11, 461. [Google Scholar] [CrossRef]
- De Maria, P.D.; Sánchez-Montero, J.M.; Sinisterra, J.V.; Alcántara, A.R. Understanding Candida rugosa lipases: An overview. Biotechnol. Adv. 2006, 24, 180–196. [Google Scholar] [CrossRef]
- Dalmau, E.; Montesinos, J.; Lotti, M.; Casas, C. Effect of different carbon sources on lipase production by Candida rugosa. Enzym. Microb. Technol. 2000, 26, 657–663. [Google Scholar] [CrossRef]
- Coşkun, G.; Çıplak, Z.; Yıldız, N.; Mehmetoğlu, Ü. Immobilization of Candida antarctica lipase on nanomaterials and investigation of the enzyme activity and enantioselectivity. Appl. Biochem. Biotechnol. 2021, 193, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Brígida, A.I.; Amaral, P.F.; Coelho, M.A.; Goncalves, L.R. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2014, 101, 148–158. [Google Scholar] [CrossRef]
- Corzo, G.; Revah, S. Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour. Technol. 1999, 70, 173–180. [Google Scholar] [CrossRef]
- Kayanadath, S.; Nathan, V.K.; Ammini, P. Anti-biofilm activity of biosurfactant derived from Halomonas sp. a Lipolytic marine bacterium from the Bay of Bengal. Microbiology 2019, 88, 585–599. [Google Scholar] [CrossRef]
- Seghal Kiran, G.; Lipton, A.N.; Kennedy, J.; Dobson, A.D.; Selvin, J. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 2014, 5, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, M.; Joshi, M.; Pariti, S.; Adivarekar, R. Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. J. Surfactants Deterg. 2013, 16, 435–443. [Google Scholar] [CrossRef]
- Bhosale, H.; Uzma, S.; Kadam, T. Optimization of Process Parameters for Improved Lipase Production by Hyperthermophilic Bacillus sonorensis 4R. J. Adv. Biol. Biotechnol. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Hassan, S.W.; El Latif, H.H.A.; Ali, S.M. Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS: Application in wastewater treatment. Front. Microbiol. 2018, 9, 412412. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, H.; Abbas, N.; Zamir, T.; Hussain, Z.; Ali, S.S. Optimization study of lipolytic enzyme from Bacillus cereus, PCSIR NL-37. Punjab Univ. J. Zool. 2018, 33, 217–224. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Sotiroudis, T.G.; Kolisis, F.N. Cell surface and cellular debris-associated heat-stable lipolytic enzyme activities of the marine alga Nannochloropsis oceanica. Biocatal. Biotransform. 2016, 34, 24–32. [Google Scholar] [CrossRef]
- Yong, S.K.; Lim, B.H.; Saleh, S.; Tey, L.-H. Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). J. Mol. Catal. B Enzym. 2016, 126, 99–105. [Google Scholar] [CrossRef]
- Waters, A.L.; Hill, R.T.; Place, A.R.; Hamann, M.T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 2010, 21, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.M. Biotechnological potential of marine microbes. In Springer Handbook of Marine Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 651–661. [Google Scholar]
- Nagarajan, M.; Kumar, R.R.; Sundaram, K.M.; Sundararaman, M. Marine biotechnology: Potentials of marine microbes and algae with reference to pharmacological and commercial values. In Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 685–723. [Google Scholar]
- Chi, Z.; Liu, Z.; Gao, L.; Gong, F.; Ma, C.; Wang, X.; Li, H. Marine yeasts and their applications in mariculture. J. Ocean Univ. China 2006, 5, 251–256. [Google Scholar]
- Ferrer, P.; Montesinos, J.L.; Valero, F.; Solà, C. Production of native and recombinant lipases by Candida rugosa: A review. Appl. Biochem. Biotechnol. 2001, 95, 221–255. [Google Scholar] [CrossRef]
- Ulbert, O.; Bélafi-Bakó, K.; Tonova, K.; Gubicza, L. Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatal. Biotransform. 2005, 23, 177–183. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Barrow, C.J. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chem. 2017, 229, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Indiarto, R.; Pangawikan, A.; Huda, S.; Yarlina, V. Characteristics, immobilization, and application of Candida rugosa lipase. Food Res. 2020, 4, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, F.; Li, Z. Gene analysis, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa. World J. Microbiol. Biotechnol. 2009, 25, 1267–1274. [Google Scholar] [CrossRef]
- Li, X.; Benning, C.; Kuo, M.-H. Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity. Eukaryot. Cell 2012, 11, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Ben Hlima, H.; Dammak, M.; Karray, A.; Drira, M.; Michaud, P.; Fendri, I.; Abdelkafi, S. Molecular and structural characterizations of lipases from Chlorella by functional genomics. Mar. Drugs 2021, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Basheer, S.M.; Chellappan, S.; Beena, P.; Sukumaran, R.K.; Elyas, K.; Chandrasekaran, M. Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment. New Biotechnol. 2011, 28, 627–638. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, M.; Zeng, Z.; Wan, D.; Yan, X.; Xia, J.; Yu, P.; Gong, D. Production, purification, properties and current perspectives for modification and application of microbial lipases. Prep. Biochem. Biotechnol. 2024, 1–16, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khan, S.A.; Hamayun, M.; Lee, I.-J. The recent advances in the utility of microbial lipases: A review. Microorganisms 2023, 11, 510. [Google Scholar] [CrossRef]
- Zambare, V.; Patankar, R.; Bhusare, B.; Christopher, L. Recent advances in feedstock and lipase research and development towards commercialization of enzymatic biodiesel. Processes 2021, 9, 1743. [Google Scholar] [CrossRef]
- Lipase Market: A Detailed Analysis of the Lipase Market by Liquid, Powder, and Gel. 2023. Available online: https://www.futuremarketinsights.com/reports/lipase-market (accessed on 2 June 2024).
- Ghattavi, S.; Homaei, A. Marine enzymes: Classification and application in various industries. Int. J. Biol. Macromol. 2023, 230, 123136. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Wang, X.; Shang, M.; Huang, J.; Guan, G.; Li, Y.; Shi, B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb. Cell Factories 2014, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Kuila, A. Lipase and their different industrial applications: A review. Braz. J. Biol. Sci. 2018, 5, 237–247. [Google Scholar] [CrossRef]
- Geethanjali, P.; Viswanathan, S.; Gokilavani, K.; Sathya, T.; Kolar, A.B. Metagenomic Lipases and their Applications in the Food Industry. Environ. Sci. Arch. 2024, 3, 132–141. [Google Scholar]
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef] [PubMed]
- Fahim, Y.A.; El-Khawaga, A.M.; Sallam, R.M.; Elsayed, M.A.; Assar, M.F.A. A Review on Lipases: Sources, Assays, Immobilization Techniques on Nanomaterials and Applications. BioNanoScience 2024, 1–18. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, V.; Dubey, V.K.; Srivastava, A.; Garg, S.K.; Singh, V.P.; Arora, P.K. Industrial applications of fungal lipases: A review. Front. Microbiol. 2023, 14, 1142536. [Google Scholar] [CrossRef]
- Dilip, C.V.; Mulaje, S.; Mohalkar, R. A review on actinomycetes and their biotechnological application. Int. J. Pharm. Sci. Res. 2013, 4, 1730. [Google Scholar]
- Lembke, P. Production techniques for omega-3 concentrates. In Omega-6/3 Fatty Acids: Functions, Sustainability Strategies and Perspectives; Springer: Berlin/Heidelberg, Germany, 2012; pp. 353–364. [Google Scholar]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; de Diego, S.M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Senanayake, S.N. Methods of concentration and purification of omega-3 fatty acids. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Elsevier: Amsterdam, The Netherlands, 2013; pp. 483–505. [Google Scholar]
- Šližyte, R.; Daukšas, E.; Falch, E.; Storrø, I.; Rustad, T. Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochem. 2005, 40, 1415–1424. [Google Scholar] [CrossRef]
- Schlenk, H. Urea inclusion compounds of fatty acids. Prog. Chem. Fats Other Lipids 1954, 2, 243–267. [Google Scholar] [CrossRef]
- Tiegs, C.; Riha, V.; Brunner, G.; Steiner, K. Separation of multicomponent mixtures of fatty acid ethyl esters from fishoil by countercurrent SFE. In Process Technology Proceedings; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Létisse, M.; Rozières, M.; Hiol, A.; Sergent, M.; Comeau, L. Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier: I. Optimization of extraction conditions. J. Supercrit. Fluids 2006, 38, 27–36. [Google Scholar] [CrossRef]
- Tang, S.; Qin, C.; Wang, H.; Li, S.; Tian, S. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids 2011, 57, 44–49. [Google Scholar] [CrossRef]
- Bottino, N.R.; Vandenburg, G.A.; Reiser, R. Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids 1967, 2, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, K.; Yang, Z.; Chang, M.; Wang, X.; Wang, X. Lipase-catalyzed two-step hydrolysis for concentration of acylglycerols rich in ω-3 polyunsaturated fatty acids. Food Chem. 2023, 400, 134115. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Ranjan Moharana, T.; Byreddy, A.R.; Puri, M.; Barrow, C.; Rao, N.M. Selective enrichment of omega-3 fatty acids in oils by phospholipase A1. PLoS ONE 2016, 11, e0151370. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; You, Y.; Zhang, Y.; Wu, G.; Karrar, E.; Zhang, L.; Zhang, H.; Jin, Q.; Wang, X. Highly valuable fish oil: Formation process, enrichment, subsequent utilization, and storage of eicosapentaenoic acid ethyl esters. Molecules 2023, 28, 672. [Google Scholar] [CrossRef]
- Melgosa, R.; Sanz, M.T.; Beltrán, S. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids–Towards a biorefinery for fish waste valorization. J. Supercrit. Fluids 2021, 169, 105121. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, W.; Cheng, X.; Dong, Z.; Chang, M.; Wang, X. Enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides by selective hydrolysis. Food Chem. 2021, 346, 128743. [Google Scholar] [CrossRef] [PubMed]
- Baloch, K.A.; Singh, A.; Pudtikajorn, K.; Benjakul, S. Lipases from different yeast strains: Production and application for n-3 fatty acid enrichment of tuna eyeball oil. Biocatal. Agric. Biotechnol. 2023, 48, 102651. [Google Scholar] [CrossRef]
- Hu, Z.; Jiao, L.; Xie, X.; Xu, L.; Yan, J.; Yang, M.; Yan, Y. Characterization of a new thermostable and organic solution-tolerant lipase from Pseudomonas fluorescens and its application in the enrichment of polyunsaturated fatty acids. Int. J. Mol. Sci. 2023, 24, 8924. [Google Scholar] [CrossRef]
- Gunathilake, T.; Akanbi, T.O.; Barrow, C.J. Lipase-produced omega-3 acylglycerols for the fortification and stabilization of extra virgin olive oil using hydroxytyrosyl palmitate. Future Foods 2021, 4, 100045. [Google Scholar] [CrossRef]
- Wang, W.; Li, T.; Ning, Z.; Wang, Y.; Yang, B.; Ma, Y.; Yang, X. A process for the synthesis of PUFA-enriched triglycerides from high-acid crude fish oil. J. Food Eng. 2012, 109, 366–371. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, C.-Y.; Lee, C.-L.; Kuo, W.-C.; Hsieh, S.-L.; Shieh, C.-J. Synthesis of DHA/EPA ethyl esters via lipase-catalyzed acidolysis using Novozym® 435: A kinetic study. Catalysts 2020, 10, 565. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; Santos, J.C.D.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [PubMed]
- Facin, B.R.; Melchiors, M.S.; Vale, A.; Oliveira, J.V.; Oliveira, D.B.D. Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects. Ind. Eng. Chem. Res. 2019, 58, 5358–5378. [Google Scholar] [CrossRef]
- Fernández-Lorente, G.; Betancor, L.; Carrascosa, A.V.; Guisán, J.M. Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. J. Am. Oil Chem. Soc. 2011, 88, 1173–1178. [Google Scholar] [CrossRef]
- Morais Júnior, W.G.; Fernández-Lorente, G.; Guisán, J.M.; Ribeiro, E.J.; De Resende, M.M.; Pessela, B.C. Production of omega-3 polyunsaturated fatty acids through hydrolysis of fish oil by Candida rugosa lipase immobilized and stabilized on different supports. Biocatal. Biotransform. 2017, 35, 63–73. [Google Scholar] [CrossRef]
- Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 2009, 38, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T.; Zonta, A.; Simpelkamp, J. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 1996, 49, 527–534. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, S.; Wang, Z.; Li, J.; Xiao, J. Lipase-interfacial catalytic systems based on hybrid membranes constructed via electrospinning and gelation. LWT 2023, 183, 114956. [Google Scholar] [CrossRef]
- Shomal, R.; Du, W.; Al-Zuhair, S. Immobilization of Lipase on Metal-Organic frameworks for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107265. [Google Scholar] [CrossRef]
- Abd Manan, F.M.; Attan, N.; Zakaria, Z.; Mahat, N.A.; Wahab, R.A. Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J. Biotechnol. 2018, 280, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Weatherley, L.R. The performance of microbial lipase immobilized onto polyolefin supports for hydrolysis of high oleate sunflower oil. Process Biochem. 2018, 68, 100–107. [Google Scholar] [CrossRef]
- Chuan Wu, J.; Selvam, V.; Teo, H.H.; Chow, Y.; Talukder, M.; Choi, W.J. Immobilization of Candida rugosa lipase by cross-linking with glutaraldehyde followed by entrapment in alginate beads. Biocatal. Biotransform. 2006, 24, 352–357. [Google Scholar] [CrossRef]
- Rueda, N.; Santos, J.C.D.; Torres, R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Adv. 2015, 5, 55588–55594. [Google Scholar] [CrossRef]
- de Morais Júnior, W.G.; Terrasan, C.R.F.; Fernández-Lorente, G.; Guisán, J.M.; Ribeiro, E.J.; de Resende, M.M.; Pessela, B.C. Solid-phase amination of Geotrichum candidum lipase: Ionic immobilization, stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. Eur. Food Res. Technol. 2017, 243, 1375–1384. [Google Scholar] [CrossRef]
- Mohammadi, M.; Habibi, Z.; Dezvarei, S.; Yousefi, M.; Ashjari, M. Selective enrichment of polyunsaturated fatty acids by hydrolysis of fish oil using immobilized and stabilized Rhizomucor miehei lipase preparations. Food Bioprod. Process. 2015, 94, 414–421. [Google Scholar] [CrossRef]
- Verma, M.L.; Rao, N.M.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts 2019, 9, 420. [Google Scholar] [CrossRef]
- Jain, P.; Mandal, S.; Minhas, A.K.; Puri, M.; Barrow, C.J. Concentrating omega-3 fatty acids in Nannochloropsis oceanica oil by using enzyme immobilized nano-silica systems. J. Clean. Prod. 2023, 406, 137030. [Google Scholar] [CrossRef]
- Ahrari, F.; Yousefi, M.; Mohammadi, M. The effect of carbon chain length of cross-linking agent on the functionality of carrier-free immobilized Thermomyces lanuginosa lipase particles. Int. J. Biol. Macromol. 2024, 270, 132076. [Google Scholar] [CrossRef] [PubMed]
Organism | Name | Lipolytic Activity (Unit per Gram) | References |
---|---|---|---|
Yeast | Candida intermedia | 42.0 a | [54,55,56] |
Pichia guilliermondi | 43.6 a | [54,57] | |
Candida parapsilosis | 10.4 a | [54,56,58] | |
Lodderomyces elongisporus | 16.6 a | [54,59,60] | |
Candida rugosa | 26.9 a | [54,61,62] | |
Candida antartica | 18.52 c | [63] | |
Yarrowia lipolytica | 5.1 a | [54,64,65] | |
Rhhodotorula mucilagionosa | 4.0 a | [54] | |
Bacteria | Marinobacter hydrocarbonoclasticus | 4.15 b | [66] |
Oceanobacillus caeni | 58.84 b | [67] | |
Bacillus sonorensis | 14.17 b | [68,69] | |
Bacillus cereus | 55.17 b | [70,71] | |
Halomonas aquamarina | 4.20 b | [66] | |
Microalgae | Nannochloropsis oceanica | 18.3 d unit/L | [72] |
Botryococcus sudeticus | 36.6 b | [73] |
Enrichment Method | Principle | Omega-3 Enrichment Content | Limitations | Ref. |
---|---|---|---|---|
Urea precipitation | Complex formation of urea with MUFAs | 45–60% | Use of flammable solvents, urea and FA complex disposal | [99] |
Supercritical fluid extraction | Selective separation ability of SC-CO2 | 60% | High cost | [100] |
Molecular distillation | Differences in molecular weight and boiling point | 60% | High temperature required | [101] |
Enzymatic | Selective hydrolysis | 70% | Loss of stability and activity of enzyme | [102] |
Lipase Source | Lipase Type | Oil Substrate | PUFA Enrichment Content (Initial) | Reference |
---|---|---|---|---|
Candida cylindracea | AY “Amano” 400SD | Tuna oil | 57.7% (34.3%) | [113] |
AY “Amano” 30SD | Less than 50% (34.3%) | |||
AY “Amano” S | Less than 50% (34.3%) | |||
Rhizopus oryzea | DF “Amano” 15 | Less than 50% (34.3%) | ||
Aspergillus oryzae | G “Amano” 50 | Less than 50% (34.3%) | ||
Candida antarctica | Lipozyme 435 | Less than 50% (34.3%) | ||
T. lanuginosus/A. oryzae | Lipozyme TL 100 L | Nannochloropsis species | 70 % (48.5%) | [11] |
T. lanuginosus/F. oxysporum/A. oryzae | Lecitase® Ultra | 53.9% (48.5%) | ||
R. oryzae | Lipase D | 55.9% (48.5%) | ||
Candida rugosa | Extracellular lipase | Skipjack tuna eyeball oil | 30% (27%) | [114] |
Pseudomonas fluorescens | Recombinant | Fish oil | 72.8% (43.16%) | [115] |
Candida antarctica B | CALB, Novozym® 435 | Pure EPA and DHA concentrate | 0.75% (16%) | [116] |
Candida antarctica B | CALB, Novozym® 435 | Crude fish oil | 74.6% (27.57%) | [117] |
Candida antarctica B | CALB, Novozym® 435 | Cobia liver oil | 94% yield | [118] |
Material Used | Lipase Source | Activity and Stability (Compared to Free Enzyme) | Reusability | Omega-3 Enrichment Ability | Reference |
---|---|---|---|---|---|
Carboxymethyl and sulfopropyl agarose beads | Geotrichum candidum | 10-fold stability retained at 50 °C | Stable up to 2 cycles | 3.2-fold increase in hydrolysis | [131] |
Silica Epoxy | Rhizomucor miehei | 25% increase in activity at 50 °C | Stable up to 5 cycles | 6.8:1 (released EPA–released DHA) | [132] |
Magnetic nanoparticles | Recombinant Bacillus subtilis | 10% increase in activity at 95 °C | Stable up to 7 cycles | 1.5 times higher DHA selectivity | [133] |
Nanoparticles Nano–silica system | Candida rugosa | 2-fold increase in activity at 45 °C | Not mentioned | 2.5-fold EPA enrichment | [134] |
Crosslinked enzyme (CLE) | Thermomyces lanuginosus | 60% activity was retained at 25 °C | Stable up to 5 cycles | 22:1 (released EPA–released DHA) | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karia, M.; Kaspal, M.; Alhattab, M.; Puri, M. Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids. Mar. Drugs 2024, 22, 301. https://doi.org/10.3390/md22070301
Karia M, Kaspal M, Alhattab M, Puri M. Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids. Marine Drugs. 2024; 22(7):301. https://doi.org/10.3390/md22070301
Chicago/Turabian StyleKaria, Mahejbin, Mona Kaspal, Mariam Alhattab, and Munish Puri. 2024. "Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids" Marine Drugs 22, no. 7: 301. https://doi.org/10.3390/md22070301
APA StyleKaria, M., Kaspal, M., Alhattab, M., & Puri, M. (2024). Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids. Marine Drugs, 22(7), 301. https://doi.org/10.3390/md22070301