Previous Issue
Volume 22, June
 
 

Mar. Drugs, Volume 22, Issue 7 (July 2024) – 26 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 2518 KiB  
Review
Anti-Biofilm Extracts and Molecules from the Marine Environment
by Flore Caudal, Catherine Roullier, Sophie Rodrigues, Alain Dufour, Sébastien Artigaud, Gwenaelle Le Blay, Alexis Bazire and Sylvain Petek
Mar. Drugs 2024, 22(7), 313; https://doi.org/10.3390/md22070313 - 10 Jul 2024
Viewed by 271
Abstract
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new [...] Read more.
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need. The use of molecules with anti-biofilm activity would be a potential solution to these problems. The marine world is rich in micro- and macro-organisms capable of producing secondary metabolites with original skeletons. An interest in the chemical strategies used by some of these organisms to regulate and/or protect themselves against pathogenic bacteria and their biofilms could lead to the development of bioinspired, eco-responsible solutions. Through this original review, we listed and sorted the various molecules and extracts from marine organisms that have been described in the literature as having strictly anti-biofilm activity, without bactericidal activity. Full article
(This article belongs to the Special Issue Marine Anti-biofilm Compounds from Natural to Synthetic Compounds)
Show Figures

Graphical abstract

19 pages, 2859 KiB  
Article
Australian Marine and Terrestrial Streptomyces-Derived Surugamides, and Synthetic Analogs, and Their Ability to Inhibit Dirofilaria immitis (Heartworm) Motility
by Taizong Wu, Waleed M. Hussein, Kaumadi Samarasekera, Yuxuan Zhu, Zeinab G. Khalil, Shengbin Jin, David F. Bruhn, Yovany Moreno, Angela A. Salim and Robert J. Capon
Mar. Drugs 2024, 22(7), 312; https://doi.org/10.3390/md22070312 - 9 Jul 2024
Viewed by 556
Abstract
A bioassay-guided chemical investigation of a bacterium, Streptomyces sp. CMB-MRB032, isolated from sheep feces collected near Bathurst, Victoria, Australia, yielded the known polyketide antimycins A4a (1) and A2a (2) as potent inhibitors of Dirofilaria immitis (heartworm) microfilaria (mf) motility [...] Read more.
A bioassay-guided chemical investigation of a bacterium, Streptomyces sp. CMB-MRB032, isolated from sheep feces collected near Bathurst, Victoria, Australia, yielded the known polyketide antimycins A4a (1) and A2a (2) as potent inhibitors of Dirofilaria immitis (heartworm) microfilaria (mf) motility (EC50 0.0013–0.0021 µg/mL), along with the octapeptide surugamide A (3) and the new N-methylated analog surugamide K (4). With biological data suggesting surugamides may also exhibit activity against D. immitis, a GNPS molecular network analysis of a library of microbes sourced from geographically diverse Australian ecosystems identified a further five taxonomically and chemically distinct surugamide producers. Scaled-up cultivation of one such producer, Streptomyces sp. CMB-M0112 isolated from a marine sediment collected at Shorncliff, Qld, Australia, yielded 3 along with the new acyl-surugamides A1–A4 (58). Solid-phase peptide synthesis provided additional synthetic analogs, surugamides S1–S3 (911), while derivatization of 3 returned the semi-synthetic surugamide S4 (12) and acyl-surugamides AS1–AS3 (1315). The natural acyl-surugamide A3 (7) and semi-synthetic acyl-surugamide AS3 (15) were shown to selectively inhibit D. immitis mf motility (EC50 3.3–3.4 µg/mL), however, unlike antimycins 1 and 2, were inactive against the gastrointestinal nematode Haemonchus contortus L1–L3 larvae (EC50 > 25 µg/mL) and were not cytotoxic to mammalian cells (human colorectal carcinoma SW620, IC50 > 30 µg/mL). A structure–activity relationship (SAR) study on the surugamides 315 revealed that selective acylation of the Lys3-ε-NH2 correlates with anthelmintic activity. Full article
(This article belongs to the Special Issue Natural Products from Marine Bacteria 2024)
Show Figures

Graphical abstract

19 pages, 5252 KiB  
Article
Toxin Dynamics among Populations of the Bioluminescent HAB Species Pyrodinium bahamense from the Indian River Lagoon, FL
by Kathleen D. Cusick, Bofan Wei, Sydney Hall, Nicole Brown, Edith A. Widder and Gregory L. Boyer
Mar. Drugs 2024, 22(7), 311; https://doi.org/10.3390/md22070311 - 4 Jul 2024
Viewed by 435
Abstract
Dinoflagellate species that form some of the most frequent toxic blooms are also bioluminescent, yet the two traits are rarely linked when studying bloom development and persistence. P. bahamense is a toxic, bioluminescent dinoflagellate that previously bloomed in Florida with no known record [...] Read more.
Dinoflagellate species that form some of the most frequent toxic blooms are also bioluminescent, yet the two traits are rarely linked when studying bloom development and persistence. P. bahamense is a toxic, bioluminescent dinoflagellate that previously bloomed in Florida with no known record of saxitoxin (STX) production. Over the past 20 years, STX was identified in P. bahamense populations. The goal of this study was to examine toxin dynamics and associated molecular mechanisms in spatially and temporally distinct P. bahamense populations from the Indian River Lagoon, FL. SxtA4 is a key gene required for toxin biosynthesis. SxtA4 genotype analysis was performed on individual cells from multiple sites. Cell abundance, toxin quota cell−1, and sxtA4 and RubisCo (rbcL) transcript abundance were also measured. There was a significant negative correlation between cell abundance and toxin quota cell−1. While the sxtA4+ genotype was dominant at all sites, its frequency varied, but it occurred at 90–100% in many samples. The underlying mechanism for toxin decrease with increased cell abundance remains unknown. However, a strong, statistically significant negative correlation was found between stxA4 transcripts and the sxtA4/rbcL ratio, suggesting cells make fewer sxtA4 transcripts as a bloom progresses. However, the influence of sxtA4− cells must also be considered. Future plans include bioluminescence measurements, normalized to a per cell basis, at sites when toxicity is measured along with concomitant quantification of sxtA4 gene and transcript copy numbers as a means to elucidate whether changes in bloom toxicity are driven more at the genetic (emergence of sxtA4− cells) or transcriptional (repression of sxtA4 in sxtA4+ cells) level. Based on the results of this study, a model is proposed that links the combined traits of toxicity and bioluminescence in P. bahamense bloom development. Full article
Show Figures

Figure 1

13 pages, 1730 KiB  
Article
Total Synthesis and Biological Profiling of Putative (±)-Marinoaziridine B and (±)-N-Methyl Marinoaziridine A
by Anđela Buljan, Višnja Stepanić, Ana Čikoš, Sanja Babić Brčić, Krunoslav Bojanić and Marin Roje
Mar. Drugs 2024, 22(7), 310; https://doi.org/10.3390/md22070310 - 3 Jul 2024
Viewed by 608
Abstract
The total synthesis of two new marine natural products, (±)-marinoaziridine B 7 and (±)-N-methyl marinoaziridine A 8, was accomplished. The (±)-marinoaziridine 7 was prepared in a six-step linear sequence with a 2% overall yield. The key steps in our strategy [...] Read more.
The total synthesis of two new marine natural products, (±)-marinoaziridine B 7 and (±)-N-methyl marinoaziridine A 8, was accomplished. The (±)-marinoaziridine 7 was prepared in a six-step linear sequence with a 2% overall yield. The key steps in our strategy were the preparation of the chiral epoxide (±)-5 using the Johnson Corey Chaykovsky reaction, followed by the ring-opening reaction and the Staudinger reaction. The N,N-dimethylation of compound (±)-7 gives (±)-N-methyl marinoaziridine A 8. The NMR spectra of synthetized (±)-marinoaziridine B 7 and isolated natural product did not match. The compounds are biologically characterized using relevant in silico, in vitro and in vivo methods. In silico ADMET and bioactivity profiling predicted toxic and neuromodulatory effects. In vitro screening by MTT assay on three cell lines (MCF-7, H-460, HEK293T) showed that both compounds exhibited moderate to strong antiproliferative and cytotoxic effects. Antimicrobial tests on bacterial cultures of Escherichia coli and Staphylococcus aureus demonstrated the dose-dependent inhibition of the growth of both bacteria. In vivo toxicological tests were performed on zebrafish Danio rerio and showed a significant reduction of zebrafish mortality due to N-methylation in (±)-8. Full article
Show Figures

Figure 1

58 pages, 5548 KiB  
Review
Marine Pharmacology in 2019–2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action
by Alejandro M. S. Mayer, Veronica A. Mayer, Michelle Swanson-Mungerson, Marsha L. Pierce, Abimael D. Rodríguez, Fumiaki Nakamura and Orazio Taglialatela-Scafati
Mar. Drugs 2024, 22(7), 309; https://doi.org/10.3390/md22070309 - 30 Jun 2024
Viewed by 983
Abstract
The current 2019–2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019–2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. [...] Read more.
The current 2019–2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019–2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019–2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

16 pages, 4540 KiB  
Article
Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment
by Honghui Guo, Yelin Zhou, Quanling Xie, Hui Chen, Ming’en Zhang, Lei Yu, Guangyu Yan, Yan Chen, Xueliang Lin, Yiping Zhang and Zhuan Hong
Mar. Drugs 2024, 22(7), 308; https://doi.org/10.3390/md22070308 - 30 Jun 2024
Viewed by 512
Abstract
To improve probiotics’ survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of [...] Read more.
To improve probiotics’ survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems. Full article
(This article belongs to the Special Issue Marine Biopolymers and Their Applications in Drug Delivery)
Show Figures

Figure 1

12 pages, 2231 KiB  
Article
ROS Induced by Aphrocallistes vastus Lectin Enhances Oncolytic Vaccinia Virus Replication and Induces Apoptosis in Hepatocellular Carcinoma Cells
by Yanan Zhang, Ying Zhu, Gaohui Jiang, Ke Chen, Guohui Zhang, Kan Chen, Ting Ye, Yanrong Zhou and Gongchu Li
Mar. Drugs 2024, 22(7), 307; https://doi.org/10.3390/md22070307 - 30 Jun 2024
Viewed by 610
Abstract
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird’s nest glycoprotein [...] Read more.
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird’s nest glycoprotein and D-galactose. Our previous studies suggested that the oncolytic vaccinia virus (oncoVV) armed with the AVL gene exerted remarkable replication and antitumor effects in vitro and in vivo. In this study, we found that oncoVV-AVL may reprogram HCC cells’ metabolism to promote ROS, and elevated ROS subsequently promoted viral replication and induced apoptosis. This study will provide a new theoretical basis for the application of oncoVV-AVL in liver cancer. Full article
(This article belongs to the Special Issue Marine Lectins 2nd Edition)
Show Figures

Figure 1

13 pages, 3126 KiB  
Article
Light Intensity Enhances the Lutein Production in Chromochloris zofingiensis Mutant LUT-4
by Qiaohong Chen, Mingmeng Liu, Wujuan Mi, Dong Wan, Gaofei Song, Weichao Huang and Yonghong Bi
Mar. Drugs 2024, 22(7), 306; https://doi.org/10.3390/md22070306 - 29 Jun 2024
Viewed by 472
Abstract
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1 [...] Read more.
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L−1, 7.75 g·L−1, and 6.6 g·L−1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Graphical abstract

18 pages, 2645 KiB  
Article
Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties
by Wen-Jie Cao, Rui Liu, Wen-Xiao Zhao, Jian Li, Yan Wang, Xiao-Jie Yuan, Hui-Lin Wang, Yu-Zhong Zhang, Xiu-Lan Chen and Yu-Qiang Zhang
Mar. Drugs 2024, 22(7), 305; https://doi.org/10.3390/md22070305 - 29 Jun 2024
Viewed by 509
Abstract
Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity [...] Read more.
Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g−1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL−1 and 1.66 mg mL−1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL−1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

33 pages, 3947 KiB  
Review
Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia
by Edoardo Andrea Cutolo, Rosanna Campitiello, Roberto Caferri, Vittorio Flavio Pagliuca, Jian Li, Spiros Nicolas Agathos and Maurizio Cutolo
Mar. Drugs 2024, 22(7), 304; https://doi.org/10.3390/md22070304 - 28 Jun 2024
Viewed by 648
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. [...] Read more.
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology. Full article
(This article belongs to the Special Issue Marine Immunomodulatory Compounds)
Show Figures

Figure 1

16 pages, 726 KiB  
Article
Isolation and Total Synthesis of PM170453, a New Cyclic Depsipeptide Isolated from Lyngbya sp.
by Rogelio Fernández, Marta Pérez, Alejandro Losada, Silvia Reboredo, Asier Gómez-San Juan, María Jesús Martín, Andrés Francesch, Simon Munt and Carmen Cuevas
Mar. Drugs 2024, 22(7), 303; https://doi.org/10.3390/md22070303 - 28 Jun 2024
Viewed by 633
Abstract
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound [...] Read more.
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound was determined by spectroscopic methods including MS, 1H, 13C and 2D-NMR. To solve the supply problem for 1 and progress pharmaceutical development, the total synthesis of 1 that involves a total of 20 chemical steps in a convergent process was carried out. Its in vitro cytotoxic activity against four human tumor cell lines, as well as the inhibition of the interaction between the programmed cell death protein 1 PD-1 and its ligand PD-L1 were also evaluated. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
18 pages, 10761 KiB  
Article
Streptomyces-Fungus Co-Culture Enhances the Production of Borrelidin and Analogs: A Genomic and Metabolomic Approach
by Tan Liu, Xi Gui, Gang Zhang, Lianzhong Luo and Jing Zhao
Mar. Drugs 2024, 22(7), 302; https://doi.org/10.3390/md22070302 - 28 Jun 2024
Viewed by 528
Abstract
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic [...] Read more.
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic profiles of co-cultures involving Streptomyces sp. 2-85 and Cladosporium sp. 3-22—derived from marine sponges. Combining Global Natural Products Social (GNPS) Molecular Networking analysis with natural product database mining, 35 potential antimicrobial metabolites annotated were detected, 19 of which were exclusive to the co-culture, with a significant increase in production. Notably, the Streptomyces-Fungus interaction led to the increased production of borrelidin and the discovery of several analogs via molecular networking. In this study, borrelidin was first applied to combat Saprolegnia parasitica, which caused saprolegniosis in aquaculture. We noted its superior inhibitory effects on mycelial growth with an EC50 of 0.004 mg/mL and on spore germination with an EC50 of 0.005 mg/mL compared to the commercial fungicide, preliminarily identifying threonyl-tRNA synthetase as its target. Further analysis of the associated gene clusters revealed an incomplete synthesis pathway with missing malonyl-CoA units for condensation within this strain, hinting at the presence of potential compensatory pathways. In conclusion, our findings shed light on the metabolic changes of marine Streptomyces and fungi in co-culture, propose the potential of borrelidin in the control of aquatic diseases, and present new prospects for antifungal applications. Full article
Show Figures

Graphical abstract

17 pages, 988 KiB  
Review
Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids
by Mahejbin Karia, Mona Kaspal, Mariam Alhattab and Munish Puri
Mar. Drugs 2024, 22(7), 301; https://doi.org/10.3390/md22070301 - 28 Jun 2024
Viewed by 960
Abstract
Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include [...] Read more.
Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote good health. To overcome this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this purpose, various approaches have been employed to obtain omega-3 concentrates from sources such as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremendous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are preferred as they are easily produced due to their higher growth rate, and they hold the ability to be manipulated using genetic modification. This review aims to highlight the recent studies that have been carried out using marine lipases for the enrichment of omega-3, to provide insight into future directions. Overall, the covalent bond-based lipase immobilization to various support materials appears most promising; however, greener and less expensive options need to be strengthened. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

16 pages, 3682 KiB  
Article
Posidonia oceanica (L.) Delile Is a Promising Marine Source Able to Alleviate Imiquimod-Induced Psoriatic Skin Inflammation
by Micheli Laura, Vasarri Marzia, Degl’Innocenti Donatella, Di Cesare Mannelli Lorenzo, Ghelardini Carla, Emiliano Antiga, Verdelli Alice, Caproni Marzia and Barletta Emanuela
Mar. Drugs 2024, 22(7), 300; https://doi.org/10.3390/md22070300 - 28 Jun 2024
Viewed by 453
Abstract
Psoriasis is a chronic immune-mediated inflammatory cutaneous disease characterized by elevated levels of inflammatory cytokines and adipokine Lipocalin-2 (LCN-2). Recently, natural plant-based products have been studied as new antipsoriatic compounds. We investigate the ability of a leaf extract of the marine plant Posidonia [...] Read more.
Psoriasis is a chronic immune-mediated inflammatory cutaneous disease characterized by elevated levels of inflammatory cytokines and adipokine Lipocalin-2 (LCN-2). Recently, natural plant-based products have been studied as new antipsoriatic compounds. We investigate the ability of a leaf extract of the marine plant Posidonia oceanica (POE) to inhibit psoriatic dermatitis in C57BL/6 mice treated with Imiquimod (IMQ). One group of mice was topically treated with IMQ (IMQ mice) for 5 days, and a second group received POE orally before each topical IMQ treatment (IMQ-POE mice). Psoriasis Area Severity Index (PASI) score, thickness, and temperature of the skin area treated with IMQ were measured in both groups. Upon sacrifice, the organs were weighed, and skin biopsies and blood samples were collected. Plasma and lesional skin protein expression of IL-17, IL-23, IFN-γ, IL-2, and TNF-α and plasma LCN-2 concentration were evaluated by ELISA. PASI score, thickness, and temperature of lesional skin were reduced in IMQ-POE mice, as were histological features of psoriatic dermatitis and expression of inflammatory cytokines and LCN-2 levels. This preliminary study aims to propose P. oceanica as a promising naturopathic anti-inflammatory treatment that could be introduced in Complementary Medicine for psoriasis. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
Show Figures

Figure 1

29 pages, 1672 KiB  
Review
Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments
by Marzia Calvanese, Caterina D’Angelo, Maria Luisa Tutino and Concetta Lauro
Mar. Drugs 2024, 22(7), 299; https://doi.org/10.3390/md22070299 - 28 Jun 2024
Viewed by 889
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly [...] Read more.
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity. Full article
Show Figures

Figure 1

9 pages, 1563 KiB  
Article
Identification of Axinellamines A and B as Anti-Tubercular Agents
by Emily J. Strong, Lendl Tan, Sasha Hayes, Hayden Whyte, Rohan A. Davis and Nicholas P. West
Mar. Drugs 2024, 22(7), 298; https://doi.org/10.3390/md22070298 - 28 Jun 2024
Viewed by 477
Abstract
Tuberculosis remains a significant global health pandemic. There is an urgent need for new anti-tubercular agents to combat the rising incidence of drug resistance and to offer effective and additive therapeutic options. High-throughput screening of a subset of the NatureBank marine fraction library [...] Read more.
Tuberculosis remains a significant global health pandemic. There is an urgent need for new anti-tubercular agents to combat the rising incidence of drug resistance and to offer effective and additive therapeutic options. High-throughput screening of a subset of the NatureBank marine fraction library (n = 2000) identified a sample derived from an Australian marine sponge belonging to the order Haplosclerida that displayed promising anti-mycobacterial activity. Bioassay-guided fractionation of the organic extract from this Haplosclerida sponge led to the purification of previously identified antimicrobial pyrrole alkaloids, axinellamines A (1) and B (2). The axinellamine compounds were found to have a 90% minimum inhibitory concentration (MIC90) of 18 µM and 15 µM, respectively. The removal of protein and complex carbon sources reduced the MIC90 of 1 and 2 to 0.6 and 0.8 µM, respectively. The axinellamines were not toxic to mammalian cells at 25 µM and significantly reduced the intracellular bacterial load by >5-fold. These data demonstrate that axinellamines A and B are effective anti-tubercular agents and promising targets for future medicinal chemistry efforts. Full article
(This article belongs to the Special Issue Bio-Active Components from Marine Sponges)
Show Figures

Figure 1

18 pages, 1567 KiB  
Article
Generation, Characterisation and Identification of Bioactive Peptides from Mesopelagic Fish Protein Hydrolysates Using In Silico and In Vitro Approaches
by Maria Hayes, Azza Naik, Leticia Mora, Bruno Iñarra, Jone Ibarruri, Carlos Bald, Thibault Cariou, David Reid, Michael Gallagher, Ragnhild Dragøy, Jorge Galino, Alba Deyà, Sissel Albrektsen, Lars Thoresen and Runar G. Solstad
Mar. Drugs 2024, 22(7), 297; https://doi.org/10.3390/md22070297 - 27 Jun 2024
Viewed by 485
Abstract
This study generated bioactive hydrolysates using the enzyme Alcalase and autolysis from mesopelagic fish, including Maurolicus muelleri and Benthosema glaciale. Generated hydrolysates were investigated for their bioactivities using in vitro bioassays, and bioactive peptides were identified using mass spectrometry in active hydrolysates [...] Read more.
This study generated bioactive hydrolysates using the enzyme Alcalase and autolysis from mesopelagic fish, including Maurolicus muelleri and Benthosema glaciale. Generated hydrolysates were investigated for their bioactivities using in vitro bioassays, and bioactive peptides were identified using mass spectrometry in active hydrolysates with cyclooxygenase, dipeptidyl peptidase IV and antioxidant activities. In silico analysis was employed to rank identified peptide sequences in terms of overall bioactivity using programmes including Peptide Ranker, PrepAIP, Umami-MRNN and AntiDMPpred. Seven peptides predicted to have anti-inflammatory, anti-type 2 diabetes or Umami potential using in silico strategies were chemically synthesised, and their anti-inflammatory activities were confirmed using in vitro bioassays with COX-1 and COX-2 enzymes. The peptide QCPLHRPWAL inhibited COX-1 and COX-2 by 82.90% (+/−0.54) and 53.84%, respectively, and had a selectivity index greater than 10. This peptide warrants further research as a novel anti-inflammatory/pain relief peptide. Other peptides with DPP-IV inhibitory and Umami flavours were identified. These offer potential for use as functional foods or topical agents to prevent pain and inflammation. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Fish)
Show Figures

Figure 1

12 pages, 2774 KiB  
Article
Discovery of Prenyltransferase-Guided Hydroxyphenylacetic Acid Derivatives from Marine Fungus Penicillium sp. W21C371
by Cancan Wang, Ye Fan, Chenjie Wang, Jing Tang, Yixian Qiu, Keren Xu, Yingjia Ding, Ying Liu, Youmin Ying and Hong Wang
Mar. Drugs 2024, 22(7), 296; https://doi.org/10.3390/md22070296 - 26 Jun 2024
Viewed by 889
Abstract
Traditional isolation methods often lead to the rediscovery of known natural products. In contrast, genome mining strategies are considered effective for the continual discovery of new natural products. In this study, we discovered a unique prenyltransferase (PT) through genome mining, capable of catalyzing [...] Read more.
Traditional isolation methods often lead to the rediscovery of known natural products. In contrast, genome mining strategies are considered effective for the continual discovery of new natural products. In this study, we discovered a unique prenyltransferase (PT) through genome mining, capable of catalyzing the transfer of a prenyl group to an aromatic nucleus to form C-C or C-O bonds. A pair of new hydroxyphenylacetic acid derivative enantiomers with prenyl units, (±)-peniprenydiol A (1), along with 16 known compounds (217), were isolated from a marine fungus, Penicillium sp. W21C371. The separation of 1 using chiral HPLC led to the isolation of the enantiomers 1a and 1b. Their structures were established on the basis of extensive spectroscopic analysis, including 1D, 2D NMR and HRESIMS. The absolute configurations of the new compounds were determined by a modified Mosher method. A plausible biosynthetic pathway for 1 was deduced, facilitated by PT catalysis. In the in vitro assay, 2 and 3 showed promising inhibitory activity against Escherichia coli β-glucuronidase (EcGUS), with IC50 values of 44.60 ± 0.84 μM and 21.60 ± 0.76 μM, respectively, compared to the positive control, D-saccharic acid 1,4-lactone hydrate (DSL). This study demonstrates the advantages of genome mining in the rational acquisition of new natural products. Full article
Show Figures

Figure 1

28 pages, 5943 KiB  
Article
A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery
by Won Hoon Song, Ye Seon Lim, Ji-Eun Kim, Hae Yeong Kang, Changyong Lee, Lata Rajbongshi, Seon Yeong Hwang, Sae-Ock Oh, Byoung Soo Kim, Dongjun Lee, Yong Jung Song and Sik Yoon
Mar. Drugs 2024, 22(7), 295; https://doi.org/10.3390/md22070295 - 26 Jun 2024
Viewed by 1385
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics [...] Read more.
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial–mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs. Full article
(This article belongs to the Special Issue Fundamentals and Biomedical Applications of Marine Collagen)
Show Figures

Figure 1

18 pages, 3933 KiB  
Article
Sulfated Polyhydroxysteroid Glycosides from the Sea of Okhotsk Starfish Henricia leviuscula spiculifera and Potential Mechanisms for Their Observed Anti-Cancer Activity against Several Types of Human Cancer Cells
by Alla A. Kicha, Dmitriy K. Tolkanov, Timofey V. Malyarenko, Olesya S. Malyarenko, Alexandra S. Kuzmich, Anatoly I. Kalinovsky, Roman S. Popov, Valentin A. Stonik, Natalia V. Ivanchina and Pavel S. Dmitrenok
Mar. Drugs 2024, 22(7), 294; https://doi.org/10.3390/md22070294 - 26 Jun 2024
Viewed by 757
Abstract
Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected [...] Read more.
Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected in the Sea of Okhotsk. Compounds 13 contain two carbohydrate moieties, one of which is attached to C-3 of the steroid tetracyclic core, whereas another is located at C-24 of the side chain of aglycon. Two glycosides (2, 3) are biosides, and one glycoside (1), unlike them, includes three monosaccharide residues. Such type triosides are a rare group of polar steroids of sea stars. In addition, the 5-substituted 3-OSO3-α-L-Araf unit was found in steroid glycosides from starfish for the first time. Cell viability analysis showed that 13 (at concentrations up to 100 μM) had negligible cytotoxicity against human embryonic kidney HEK293, melanoma SK-MEL-28, breast cancer MDA-MB-231, and colorectal carcinoma HCT 116 cells. These compounds significantly inhibited proliferation and colony formation in HCT 116 cells at non-toxic concentrations, with compound 3 having the greatest effect. Compound 3 exerted anti-proliferative effects on HCT 116 cells through the induction of dose-dependent cell cycle arrest at the G2/M phase, regulation of expression of cell cycle proteins CDK2, CDK4, cyclin D1, p21, and inhibition of phosphorylation of protein kinases c-Raf, MEK1/2, ERK1/2 of the MAPK/ERK1/2 pathway. Full article
(This article belongs to the Special Issue Marine Glycomics 2nd Edition)
Show Figures

Graphical abstract

12 pages, 1821 KiB  
Article
Tunicamycins from Marine-Derived Streptomyces bacillaris Inhibit MurNAc-Pentapeptide Translocase in Staphylococcus aureus
by Jayho Lee, Ji-Yeon Hwang, Daehyun Oh, Dong-Chan Oh, Hyeung-geun Park, Jongheon Shin and Ki-Bong Oh
Mar. Drugs 2024, 22(7), 293; https://doi.org/10.3390/md22070293 - 26 Jun 2024
Viewed by 874
Abstract
Four tunicamycin class compounds, tunicamycin VII (1), tunicamycin VIII (2), corynetoxin U17a (3), and tunicamycin IX (4), were isolated from the culture broth of the marine-derived actinomycete Streptomyces sp. MBTG32. The strain was identified using [...] Read more.
Four tunicamycin class compounds, tunicamycin VII (1), tunicamycin VIII (2), corynetoxin U17a (3), and tunicamycin IX (4), were isolated from the culture broth of the marine-derived actinomycete Streptomyces sp. MBTG32. The strain was identified using the 16S rDNA sequencing technique, and the isolated strain was closely related to Streptomyces bacillaris. The structures of the isolated compounds were elucidated based on spectroscopic data and comparisons with previously reported NMR data. Compounds 14 showed potent antibacterial activities against Gram-positive bacteria, especially Staphylococcus aureus, with MIC values of 0.13–0.25 µg/mL. Through a recombinant enzyme assay and overexpression analysis, we found that the isolated compounds exerted potent inhibitory effects on S. aureus MurNAc-pentapeptide translocase (MraY), with IC50 values of 0.08–0.21 µg/mL. The present results support that the underlying mechanism of action of tunicamycins isolated from marine-derived Streptomyces sp. is also associated with the inhibition of MraY enzyme activity in S. aureus. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

18 pages, 2183 KiB  
Article
The Composition of Triterpene Glycosides in the Sea Cucumber Psolus peronii: Anticancer Activity of the Glycosides against Three Human Breast Cancer Cell Lines and Quantitative Structure–Activity Relationships (QSAR)
by Alexandra Sergeevna Silchenko, Anatoly Ivanovich Kalinovsky, Sergey Anatolievich Avilov, Roman Sergeevich Popov, Ekaterina Alexandrovna Chingizova, Ekaterina Sergeevna Menchinskaya, Elena Alexandrovna Zelepuga, Kseniya Mikhailovna Tabakmakher, Vadim Georgievich Stepanov and Vladimir Ivanovich Kalinin
Mar. Drugs 2024, 22(7), 292; https://doi.org/10.3390/md22070292 - 26 Jun 2024
Viewed by 861
Abstract
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from [...] Read more.
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 28 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 18 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure–activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules’ surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

26 pages, 1555 KiB  
Review
Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings
by Daniela Pereira, Joana R. Almeida, Honorina Cidade and Marta Correia-da-Silva
Mar. Drugs 2024, 22(7), 291; https://doi.org/10.3390/md22070291 - 24 Jun 2024
Viewed by 471
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of [...] Read more.
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests. Full article
(This article belongs to the Special Issue Marine Anti-biofilm Compounds from Natural to Synthetic Compounds)
Show Figures

Figure 1

17 pages, 1173 KiB  
Systematic Review
Fucoidan as a Promising Drug for Pain Treatment: Systematic Review and Meta-Analysis
by Miguel Á. Huerta, Miguel Á. Tejada and Francisco R. Nieto
Mar. Drugs 2024, 22(7), 290; https://doi.org/10.3390/md22070290 - 24 Jun 2024
Viewed by 1052
Abstract
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic [...] Read more.
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects. We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces neutrophil infiltration by 70–90% at early time points. This meta-analysis showed that preventative treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies have observed that fucoidan treatment reduces the pain that is associated with various pathologies. Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but they were mostly small pilot studies. Considering all the above information, it can be concluded that fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising therapeutic strategy for pain treatment. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

16 pages, 2867 KiB  
Article
Genomic Analysis of Novel Sulfitobacter Bacterial Strains Isolated from Marine Biofilms
by Han Cui, Shen Fan, Wei Ding and Weipeng Zhang
Mar. Drugs 2024, 22(7), 289; https://doi.org/10.3390/md22070289 - 22 Jun 2024
Viewed by 747
Abstract
Bacteria from the genus Sulfitobacter are distributed across various marine habitats and play a significant role in sulfur cycling. However, the metabolic features of Sulfitobacter inhabiting marine biofilms are still not well understood. Here, complete genomes and paired metatranscriptomes of eight Sulfitobacter strains, [...] Read more.
Bacteria from the genus Sulfitobacter are distributed across various marine habitats and play a significant role in sulfur cycling. However, the metabolic features of Sulfitobacter inhabiting marine biofilms are still not well understood. Here, complete genomes and paired metatranscriptomes of eight Sulfitobacter strains, isolated from biofilms on subtidal stones, have been analyzed to explore their central energy metabolism and potential of secondary metabolite biosynthesis. Based on average nucleotide identity and phylogenetic analysis, the eight strains were classified into six novel species and two novel strains. The reconstruction of the metabolic pathways indicated that all strains had a complete Entner–Doudoroff pathway, pentose phosphate pathway, and diverse pathways for amino acid metabolism, suggesting the presence of an optimized central carbon metabolism. Pangenome analysis further revealed the differences between the gene cluster distribution patterns among the eight strains, suggesting significant functional variation. Moreover, a total of 47 biosynthetic gene clusters were discovered, which were further classified into 37 gene cluster families that showed low similarity with previously documented clusters. Furthermore, metatranscriptomic analysis revealed the expressions of key functional genes involved in the biosynthesis of ribosomal peptides in in situ marine biofilms. Overall, this study sheds new light on the metabolic features, adaptive strategies, and value of genome mining in this group of biofilm-associated Sulfitobacter bacteria. Full article
(This article belongs to the Special Issue Biosynthesis of Marine Microbial Natural Products)
Show Figures

Figure 1

25 pages, 2407 KiB  
Review
Effects of Marine Natural Products on Liver Diseases
by Yandi Sun, Yansong Dong, Xiaohang Cui, Xiaohe Guo, Juan Zhang, Chong Yu, Man Zhang and Haifeng Wang
Mar. Drugs 2024, 22(7), 288; https://doi.org/10.3390/md22070288 - 21 Jun 2024
Viewed by 426
Abstract
The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and [...] Read more.
The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

Previous Issue
Back to TopTop