Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Hydrolysis Parameters of Protease A69 on Peanut Protein
2.2. Preparation and Characterization of PPs
2.3. Amino Acid Composition of the Prepared PPs
2.4. The Antioxidant Activity of the Prepared PPs
2.5. The ACE-Inhibitory Activity of the Prepared PPs
2.6. Identification of Antioxidant Peptides and ACE-Inhibitory Peptides from the Prepared PPs
Sequence | Molecular Weight (Da) | Source | IC50 (μmol L−1) | References |
---|---|---|---|---|
IG | 188.23 | Milk | <20 | [16] |
IG | 188.23 | Cereals storage protein | - | [48] |
IG | 188.23 | Pork sarcoplasmic proteins | - | [49] |
GA | 146.15 | - | <20 | [16] |
GA | 146.15 | Pork sarcoplasmic proteins | - | [49] |
GA | 146.15 | Cereals storage protein | - | [48] |
GA | 146.15 | - | 2000 | [39] |
KW | 332.4 | Milk | - | [50] |
KW | 332.4 | - | <20,000 | [16] |
KW | 332.4 | Wakame (Undaria pinnatifida) | 2.7–43.7 | [51] |
KW | 332.4 | Pork sarcoplasmic proteins | - | [49] |
KW | 332.4 | Cereals storage protein | - | [48] |
KW | 332.4 | Fish (Sardine (Sardina pilchardus muscle)) | 1.63 | [52] |
KW | 332.4 | Wakame (Undaria pinnatifida) | 10.8 | [53] |
KW | 332.4 | Synthesized | 7.8 | [54] |
PG | 172.18 | Pork sarcoplasmic proteins | - | [49] |
PG | 172.18 | Cereals storage protein | - | [48] |
PG | 172.18 | - | 17,000 | [39] |
PG | 172.18 | - | <20 | [16] |
PLG | 285.34 | Fish (Alaska pollack (Theragra chalcogramma)) | 4.74 | [55] |
PLG | 285.34 | Cereals storage protein | - | [48] |
VLP | 327.42 | Milk | - | [50] |
VLP | 327.42 | Pork sarcoplasmic proteins | - | [49] |
VLP | 327.42 | Cereals (Finnish) | 0.46 | [48] |
VLP | 327.42 | - | <20 | [16] |
VFPS | 448.52 | Synthesized | 0.46 | [54] |
HIR | 424.5 | Milk derived | 953 | [16] |
PPL | 325.41 | Insect | >1000 | [56] |
MKP | 374.5 | Milk-derived | <10 | - |
VRW | 459.55 | Milk-derived | <10 | - |
TVY | 381.43 | Milk (digested milk products) | 15 | [16] |
GAW | 332.36 | Milk-derived | - | [16] |
QQI | 387.44 | Milk–cheese (goat milk protein and cheeses) | - | [57] |
IPQ | 356 | Milk (sodium caseinate) | - | [58] |
YGG | 295.3 | - | <20 | [16] |
GYK | 366.42 | Bovine beta lactoglobulin | 160 | - |
YPR | 434.5 | Sake and sake lees | 16.5 | [59] |
VIF | 377.48 | Fish (sea bream scale) | 7.5 | [60] |
Sequence | Average Molecular Weight (Da) | Source | Antioxidant Activity | References |
---|---|---|---|---|
LLPH | 478.58 | Designed peptide | - | [61] |
RHI | 424.5 | Synthesis peptide | The trolox equivalent antioxidant capability (TEAC) of the peptide was 0.189 (mMTE) | [62] |
RWI | 473.57 | Synthesis peptide | The trolox equivalent antioxidant capability (TEAC) of the peptide was 0.702 (mMTE) | [62] |
YVL | 393.48 | Bovine milk protein | The peptide showed the ACE-inhibitory activity (IC50 > 1000 μmol L−1) and oxygen radical absorption capacity (0.96 ± 0.04 μmol trolox equivalent per μmol of peptide) of chemically synthesized peptides | - |
TY | 282.29 | Potato protein | - | [63] |
YGG | 295.29 | Bovine whey protein | The peptide YGG showed very low ABTS+ free radical scavenging activity (75%) at the concentration of 100 μM | [64] |
FVPH | 498.57 | Chickpea legumin | - | [65] |
PEQ | 372.37 | bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 0.22 ± 0.02 mmol Fe3+ mol−1 (FARP) | [66] |
HIR | 424.5 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 1.31 ± 0.12 mmol Fe3+ mol−1 (FARP) | [66] |
TCG | 279.31 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 4.67 ± 0.17 mmol Fe3+ mol−1 (FARP) | [66] |
KPT | 344.4 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 0.52 ± 0.06 mmol Fe3+ mol−1 (FARP) | [66] |
PEG | 301.29 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 0.19 ± 0.04 mmol Fe3+ mol−1 (FARP) | [66] |
NGE | 318.28 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 0.50 ± 0.09 mmol Fe3+ mol−1 (FARP) | [66] |
PAV | 285.34 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 1.10 ± 0.02 mmol Fe3+ mol−1 (FARP) | [66] |
AVF | 335.4 | Bovine whey protein (b-lactoglobulin) | The peptide showed antioxidant activity of 2.28 ± 0.06 mmol Fe3+ mol−1 (FARP) | [66] |
3. Materials and Methods
3.1. Experimental Materials
3.2. Optimization of the Hydrolytic Parameters of Protease A69 with Respect to Peanut Protein
3.3. Preparation of PPs Using A69
3.4. Characterization of the Prepared PPs
3.5. Determination of Protein Content
3.6. Assay of the Antioxidant Activity of the Prepared PPs
3.7. Assay of the ACE-Inhibitory Activity of the Prepared PPs
3.8. LC-MS/MS Analysis of the Prepared PPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Gutiérrez-López, G.F.; Dávila-Ortiz, G. Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Eng. Rev. 2012, 4, 224–243. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Sato, H.H. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res. Int. 2015, 74, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Meisel, H. Biochemical Properties of Peptides Encrypted in Bovine Milk Proteins. Curr. Med. Chem. 2005, 12, 1905–1919. [Google Scholar] [CrossRef]
- Gobbetti, M.; Minervini, F.; Rizzello, C.G. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. Int. J. Dairy Technol. 2004, 57, 173–188. [Google Scholar] [CrossRef]
- Bamdad, F.; Chen, L. Antioxidant capacities of fractionated barley hordein hydrolysates in relation to peptide structures. Mol. Nutr. Food Res. 2013, 57, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Yang, X.; Li, Y.; Liang, Q.; Wang, Y.; Lu, F.; Owusu, J.; Huang, S.; Ren, X.; Ma, H. The milk macromolecular peptide: Preparation and evaluation of antihypertensive activity in rats. Food Funct. 2020, 11, 4403–4415. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-H.; Zhang, X.-Y.; Wang, Z.; Zhang, X.; Liu, S.-C.; Song, X.-Y.; Zhang, Y.-Z.; Ding, J.-M.; Chen, X.-L.; Xu, F. Potential of Thermolysin-like Protease A69 in Preparation of Bovine Collagen Peptides with Moisture-Retention Ability and Antioxidative Activity. Mar. Drugs 2021, 19, 676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, W.X.; Wang, Y.; Cheng, J.H.; Bao, K.; He, J.; Chen, X.L. Production of marine bacterial metalloprotease A69 and evaluation of its potential in preparing soybean peptides with angiotensin-converting enzyme-inhibitory activity. J. Sci. Food Agric. 2023, 103, 7153–7163. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.G.; Chavan, J.K.; Kadam, S.S.; Salunkhe, D.K. Effects of dry heat treatments to peanut kernels on the functional properties of the defatted meal. Plant Foods Hum. Nutr. 1993, 43, 157–162. [Google Scholar] [CrossRef]
- Damame, S.V.; Chavan, J.K.; Kadam, S.S. Effects of roasting and storage on proteins and oil in peanut kernels. Plant Foods Hum. Nutr. 1990, 40, 143–148. [Google Scholar] [CrossRef]
- Tang, L.; Sun, J.; Zhang, H.C.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Liu, S.F.; Yang, Q.L. Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate. PLoS ONE 2012, 7, e37863. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Bai, J.; Huang, Y.; Wang, Z.; Xu, Y.; Huang, Y.; Zhong, K.; Huang, Y.; Gao, H.; Bu, Q. Purification and Identification of Novel Antioxidant Peptides from Hydrolysates of Peanuts (Arachis hypogaea) and Their Neuroprotective Activities. J. Agric. Food Chem. 2023, 71, 6039–6049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Ma, L.; Wang, Q. Bioactive Peptides from Low Denatured Peanut Dregs: Production and Antihypertensive Activity. Adv. Mater. Res. 2011, 343–344, 698–706. [Google Scholar] [CrossRef]
- Guang, C.; Phillips, R.D. Purification, Activity and Sequence of Angiotensin I Converting Enzyme Inhibitory Peptide from Alcalase Hydrolysate of Peanut Flour. J. Agric. Food Chem. 2009, 57, 10102–10106. [Google Scholar] [CrossRef] [PubMed]
- Al-Bukhaiti, W.Q.; Al-Dalali, S.; Li, H.; Yao, L.; Abed, S.M.; Zhao, L.; Qiu, S.-X. Identification and in vitro Characterization of Novel Antidiabetic Peptides Released Enzymatically from Peanut Protein. Plant Foods Hum. Nutr. 2023, 79, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure−Activity Relationship Study of Di- and Tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Je, J.-Y.; Qian, Z.-J.; Byun, H.-G.; Kim, S.-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Chen, C.; Chi, Y.-J.; Xu, W. Comparisons on the Functional Properties and Antioxidant Activity of Spray-Dried and Freeze-Dried Egg White Protein Hydrolysate. Food Bioprocess Technol. 2011, 5, 2342–2352. [Google Scholar] [CrossRef]
- Borawska, J.; Darewicz, M.; Vegarud, G.E.; Iwaniak, A.; Minkiewicz, P. Ex vivo digestion of carp muscle tissue—ACE inhibitory and antioxidant activities of the obtained hydrolysates. Food Funct. 2015, 6, 210–217. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, L.; Guo, X.; Wang, X.; Yao, H. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 2010, 119, 226–234. [Google Scholar] [CrossRef]
- Chi, C.-F.; Hu, F.-Y.; Wang, B.; Ren, X.-J.; Deng, S.-G.; Wu, C.-W. Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem. 2015, 168, 662–667. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Yu, X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 145, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.-B.; Kim, J.-G.; Je, J.-Y. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 2014, 147, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Boschin, G.; Scigliuolo, G.M.; Resta, D.; Arnoldi, A. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem. 2014, 145, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; FitzGerald, R. Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Curr. Pharm. Des. 2007, 13, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Jeong, S.-C.; Kim, J.-H.; Lee, Y.-H.; Ju, Y.-C.; Lee, J.-S. Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem. 2011, 127, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Coppey, L.J.; Davidson, E.P.; Rinehart, T.W.; Gellett, J.S.; Oltman, C.L.; Lund, D.D.; Yorek, M.A. ACE Inhibitor or Angiotensin II Receptor Antagonist Attenuates Diabetic Neuropathy in Streptozotocin-Induced Diabetic Rats. Diabetes 2006, 55, 341–348. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, J. LC–MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem. 2013, 141, 2682–2690. [Google Scholar] [CrossRef]
- Yang, Y.; Marczak, E.D.; Yokoo, M.; Usui, H.; Yoshikawa, M. Isolation and Antihypertensive Effect of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Spinach Rubisco. J. Agric. Food Chem. 2003, 51, 4897–4902. [Google Scholar] [CrossRef] [PubMed]
- Thewissen, B.G.; Pauly, A.; Celus, I.; Brijs, K.; Delcour, J.A. Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates. Food Chem. 2011, 127, 1653–1658. [Google Scholar] [CrossRef]
- Priyanto, A.D.; Doerksen, R.J.; Chang, C.-I.; Sung, W.-C.; Widjanarko, S.B.; Kusnadi, J.; Lin, Y.-C.; Wang, T.-C.; Hsu, J.-L. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J. Proteom. 2015, 128, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, Y.; Hou, X.; Lu, Y.; Meng, H.; Pei, S.; Dai, Z.; Wu, S. Separation and identification of ACE inhibitory peptides from lizard fish proteins hydrolysates by metal affinity-immobilized magnetic liposome. Protein Expr. Purif. 2022, 191, 106027. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, R.; Vizovišek, M.; Turk, D.; Turk, B.; Fonović, M. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals pH-dependent specificity switch of legumain. EMBO J. 2017, 36, 2455–2465. [Google Scholar] [CrossRef]
- Thayer, M.M.; Flaherty, K.M.; McKay, D.B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J. Biol. Chem. 1991, 266, 2864–2871. [Google Scholar] [CrossRef] [PubMed]
- Meisel, H. Biochemical properties of regulatory peptides derived from mil proteins. Biopolymers 1997, 43, 119–128. [Google Scholar] [CrossRef]
- Iroyukifujita, H.; Eiichiyokoyama, K.; Yoshikawa, M. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins. J. Food Sci. 2008, 65, 564–569. [Google Scholar] [CrossRef]
- Cheung, H.S.; Wang, F.L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar] [CrossRef]
- Li, Y.-W.; Li, B. Characterization of structure–antioxidant activity relationship of peptides in free radical systems using QSAR models: Key sequence positions and their amino acid properties. J. Theor. Biol. 2013, 318, 29–43. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Dinesh kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Ye, R.; Wu, Y.; Xia, W. Comparison of analytical methods to assay inhibitors of angiotensin I-converting enzyme. Food Chem. 2013, 141, 3329–3334. [Google Scholar] [CrossRef]
- Jimsheena, V.K.; Gowda, L.R. Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: Structure–activity relationship. Peptides 2010, 31, 1165–1176. [Google Scholar] [CrossRef]
- Motta, A.; Shi, A.; Liu, H.; Liu, L.; Hu, H.; Wang, Q.; Adhikari, B. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide. PLoS ONE 2014, 9, e111188. [Google Scholar]
- Liu, L.-N.; Zhang, S.-H.; He, D.-P. Detection of an angiotensin converting enzyme inhibitory peptide from peanut protein isolate and peanut polypeptides by western blot and dot blot hybridization. Eur. Food Res. Technol. 2009, 230, 89–94. [Google Scholar] [CrossRef]
- Ji, N.; Sun, C.; Zhao, Y.; Xiong, L.; Sun, Q. Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 2014, 161, 148–154. [Google Scholar] [CrossRef]
- Zheng, L.; Su, G.; Ren, J.; Gu, L.; You, L.; Zhao, M. Isolation and Characterization of an Oxygen Radical Absorbance Activity Peptide from Defatted Peanut Meal Hydrolysate and Its Antioxidant Properties. J. Agric. Food Chem. 2012, 60, 5431–5437. [Google Scholar] [CrossRef]
- Cavazos, A.; Gonzalez de Mejia, E. Identification of Bioactive Peptides from Cereal Storage Proteins and Their Potential Role in Prevention of Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12, 364–380. [Google Scholar] [CrossRef]
- Castellano, P.; Aristoy, M.-C.; Sentandreu, M.Á.; Vignolo, G.; Toldrá, F. Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus. J. Proteom. 2013, 89, 183–190. [Google Scholar] [CrossRef]
- Dziuba, M.; Dziuba, B.; Iwaniak, A. Milk proteins as precursors of bioactive peptides. Acta Sci. Pol. Technol. Aliment. 2009, 8, 71–90. [Google Scholar]
- Puchalska, P.; Marina Alegre, M.L.; García López, M.C. Isolation and Characterization of Peptides with Antihypertensive Activity in Foodstuffs. Crit. Rev. Food Sci. Nutr. 2014, 55, 521–551. [Google Scholar] [CrossRef] [PubMed]
- Matsufuji, H.; Matsui, T.; Seki, E.; Osajima, K.; Nakashima, M.; Osajima, Y. Angiotensin I-converting Enzyme Inhibitory Peptides in an Alkaline Protease Hydrolyzate Derived from Sardine Muscle. Biosci. Biotechnol. Biochem. 2014, 58, 2244–2245. [Google Scholar] [CrossRef] [PubMed]
- Suetsuna, K.; Maekawa, K.; Chen, J.-R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 2004, 15, 267–272. [Google Scholar] [CrossRef]
- Terashima, M.; Oe, M.; Ogura, K.; Matsumura, S. Inhibition Strength of Short Peptides Derived from an ACE Inhibitory Peptide. J. Agric. Food Chem. 2011, 59, 11234–11237. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.-G.; Kim, S.-K. Structure and Activity of Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Alaskan Pollack Skin. BMB Rep. 2002, 35, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, L.; Van Camp, J.; Morel, N.; Rougé, P.; Herregods, G.; Smagghe, G. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides 2010, 31, 482–488. [Google Scholar] [CrossRef] [PubMed]
- El-Salam, M.H.A.; El-Shibiny, S. Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, and Yak Milks and Milk Products. Food Rev. Int. 2013, 29, 1–23. [Google Scholar] [CrossRef]
- Minervini, F.; Algaron, F.; Rizzello, C.G.; Fox, P.F.; Monnet, V.; Gobbetti, M. Angiotensin I-Converting-Enzyme-Inhibitory and Antibacterial Peptides from Lactobacillus helveticus PR4 Proteinase-Hydrolyzed Caseins of Milk from Six Species. Appl. Environ. Microbiol. 2003, 69, 5297–5305. [Google Scholar] [CrossRef]
- Saito, Y.; Wanezaki, K.; Kawato, A.; Imayasu, S. Structure and Activity of Angiotensin I Converting Enzyme Inhibitory Peptides from Sake and Sake Lees. Biosci. Biotechnol. Biochem. 2014, 58, 1767–1771. [Google Scholar] [CrossRef]
- He, H.-L.; Liu, D.; Ma, C.-B. Review on the Angiotensin-I-Converting Enzyme (ACE) Inhibitor Peptides from Marine Proteins. Appl. Biochem. Biotechnol. 2012, 169, 738–749. [Google Scholar] [CrossRef]
- Matoba, N.; Yamada, Y.; Yoshikawa, M. Design of a Genetically Modified Soybean Protein Preventing Hypertension Based on an Anti-Hypertensive Peptide Derived from Ovalbumin. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2003, 1, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Jin, D.-H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chen, J.; Xiong, Y.L. Chromatographic Separation and Tandem MS Identification of Active Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-Water Emulsions. J. Agric. Food Chem. 2010, 58, 8825–8832. [Google Scholar] [CrossRef] [PubMed]
- Sadat, L.; Cakir-Kiefer, C.; N’Negue, M.-A.; Gaillard, J.-L.; Girardet, J.-M.; Miclo, L. Isolation and identification of antioxidative peptides from bovine α-lactalbumin. Int. Dairy J. 2011, 21, 214–221. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Contreras, M.d.M.; Recio, I.; Alaiz, M.; Vioque, J. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 2015, 180, 194–202. [Google Scholar] [CrossRef]
- Tian, M.; Fang, B.; Jiang, L.; Guo, H.; Cui, J.; Ren, F. Structure-activity relationship of a series of antioxidant tripeptides derived from β-Lactoglobulin using QSAR modeling. Dairy Sci. Technol. 2015, 95, 451–463. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhang, Y.-Z.; Gao, P.-J.; Luan, X.-W. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar. Biol. 2003, 143, 989–993. [Google Scholar] [CrossRef]
- GB 5009.168-2016; Determination of Protein in Foods. Standards Press of China: Beijing, China, 2016.
- Wang, J.; Hu, J.; Cui, J.; Bai, X.; Du, Y.; Miyaguchi, Y.; Lin, B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 2008, 111, 302–308. [Google Scholar] [CrossRef]
MW Range (Da) | Content (%) | ||||
---|---|---|---|---|---|
30 °C | 40 °C | 50 °C | 60 °C | 70 °C | |
>10,000 | 2.84 | 2.80 | 0.84 | 0.29 | 1.24 |
5000–10,000 | 6.79 | 6.20 | 1.86 | 0.69 | 3.80 |
3000–5000 | 3.26 | 3.05 | 1.60 | 1.45 | 5.38 |
1000–3000 | 18.21 | 17.87 | 15.11 | 15.20 | 22.54 |
<1000 | 68.90 | 70.08 | 80.59 | 82.37 | 67.04 |
<500 | 43.76 | 45.73 | 52.16 | 53.35 | 42.17 |
MW Range (Da) | Content (%) | ||||||
---|---|---|---|---|---|---|---|
500 U/g | 1000 U/g | 2000 U/g | 3000 U/g | 4000 U/g | 5000 U/g | 6000 U/g | |
>10,000 | 26.83 | 13.66 | 5.37 | 0.87 | 0.30 | 0.22 | 0.45 |
5000–10,000 | 4.69 | 5.71 | 3.54 | 0.58 | 1.76 | 1.98 | 1.13 |
3000–5000 | 3.94 | 3.22 | 2.40 | 1.43 | 1.70 | 1.75 | 1.68 |
1000–3000 | 11.05 | 12.47 | 13.85 | 14.80 | 10.69 | 12.50 | 12.91 |
<1000 | 53.49 | 64.94 | 74.84 | 82.32 | 85.55 | 83.55 | 83.83 |
<500 | 39.12 | 43.85 | 47.45 | 53.97 | 54.58 | 54.18 | 55.13 |
MW Range (Da) | Content (%) | |||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | |
>10,000 | 18.29 | 6.68 | 3.01 | 0.78 | 0.61 | 0.41 |
5000–10,000 | 3.36 | 2.19 | 1.36 | 0.89 | 0.85 | 0.55 |
3000–5000 | 2.29 | 1.99 | 1.90 | 1.92 | 2.08 | 1.98 |
1000–3000 | 8.38 | 12.59 | 14.80 | 14.19 | 14.49 | 14.33 |
<1000 | 67.68 | 76.55 | 78.93 | 82.22 | 81.97 | 82.73 |
<500 | 42.18 | 45.51 | 48.63 | 52.26 | 53.26 | 53.20 |
MW Range (Da) | Content (%) |
---|---|
>10,000 | 0.00 |
5000–10,000 | 0.89 |
3000–5000 | 2.55 |
1000–3000 | 13.81 |
<1000 | 82.75 |
<500 | 54.19 |
Amino Acids | Free Amino Acids (g/100 g) | Total Amino Acids (g/100 g) |
---|---|---|
Asp | 0.005 ± 0.001 | 7.491 ± 0.688 |
Thr | 0.023 ± 0.002 | 2.000 ± 0.181 |
Ser | 0.001 ± 0.001 | 2.786 ± 0.220 |
Glu | 0.389 ± 0.032 | 14.705 ± 0.616 |
Gly | 0.019 ± 0.002 | 2.606 ± 0.254 |
Ala | 0.147 ± 0.013 | 2.922 ± 0.284 |
Val | 0.167 ± 0.011 | 3.706 ± 0.257 |
Cys | 0.129± 0.004 | 2.461 ± 0.036 |
Met | 0.053 ± 0.004 | 0.781 ± 0.052 |
Ile | 0.032 ± 0.003 | 1.849 ± 0.166 |
Leu | 0.177 ± 0.016 | 3.526 ± 0.329 |
Tyr | 0.314 ± 0.020 | 3.106 ± 0.073 |
Phe | 0.546 ± 0.042 | 3.942 ± 0.188 |
Lys | 0.113 ± 0.007 | 3.058 ± 0.193 |
His | 0.066 ± 0.004 | 1.430 ± 0.090 |
Arg | 0.109 ± 0.010 | 5.108 ± 0.461 |
Pro | 0.323 ± 0.041 | 12.373 ± 0.900 |
Trp b | - | - |
Total | 2.612 ± 0.209 | 73.848 ± 4.962 |
Amino Acid | P1 | Content $ (%) | Amino Acid | P1’ | Content $ (%) |
---|---|---|---|---|---|
Leu(L) | 554 | 14.25 | Leu(L) | 600 | 15.44 |
Phe(F) | 467 | 12.01 | Val(V) | 392 | 10.09 |
Ile(I) | 264 | 6.79 | Ser(S) | 370 | 9.52 |
Ala(A) | 246 | 6.33 | Thr(T) | 362 | 9.32 |
Gln(Q) | 217 | 5.58 | Ile(I) | 354 | 9.11 |
Val(V) | 213 | 5.48 | Gly(G) | 225 | 5.79 |
Ser(S) | 210 | 5.40 | Ala(A) | 218 | 5.61 |
Thr(T) | 199 | 5.12 | Glu(E) | 173 | 4.45 |
Lys(K) | 195 | 5.02 | Phe(F) | 169 | 4.35 |
Arg(R) | 185 | 4.76 | Arg(R) | 166 | 4.27 |
Gly(G) | 169 | 4.35 | Lys(K) | 140 | 3.60 |
Glu(E) | 166 | 4.27 | Pro(P) | 132 | 3.40 |
Asn(N) | 136 | 3.50 | Gln(Q) | 125 | 3.22 |
Pro(P) | 132 | 3.40 | Asn(N) | 123 | 3.17 |
Tyr(Y) | 131 | 3.37 | Asp(D) | 104 | 2.68 |
Met(M) | 121 | 3.11 | His(H) | 63 | 1.62 |
Asp(D) | 109 | 2.80 | Met(M) | 63 | 1.62 |
His(H) | 102 | 2.62 | Tyr(Y) | 53 | 1.36 |
Trp(W) | 42 | 1.08 | Trp(W) | 28 | 0.72 |
Cys(C) | 30 | 0.77 | Cys(C) | 26 | 0.67 |
Total | 3888 | 100.00 | Total | 3886 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.-J.; Liu, R.; Zhao, W.-X.; Li, J.; Wang, Y.; Yuan, X.-J.; Wang, H.-L.; Zhang, Y.-Z.; Chen, X.-L.; Zhang, Y.-Q. Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties. Mar. Drugs 2024, 22, 305. https://doi.org/10.3390/md22070305
Cao W-J, Liu R, Zhao W-X, Li J, Wang Y, Yuan X-J, Wang H-L, Zhang Y-Z, Chen X-L, Zhang Y-Q. Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties. Marine Drugs. 2024; 22(7):305. https://doi.org/10.3390/md22070305
Chicago/Turabian StyleCao, Wen-Jie, Rui Liu, Wen-Xiao Zhao, Jian Li, Yan Wang, Xiao-Jie Yuan, Hui-Lin Wang, Yu-Zhong Zhang, Xiu-Lan Chen, and Yu-Qiang Zhang. 2024. "Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties" Marine Drugs 22, no. 7: 305. https://doi.org/10.3390/md22070305
APA StyleCao, W. -J., Liu, R., Zhao, W. -X., Li, J., Wang, Y., Yuan, X. -J., Wang, H. -L., Zhang, Y. -Z., Chen, X. -L., & Zhang, Y. -Q. (2024). Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties. Marine Drugs, 22(7), 305. https://doi.org/10.3390/md22070305