Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.1.1. Overview
2.1.2. Data of BDI and SMI, Sources of Ebola Case and Internet Users’ Information
2.2. Internet Surveillance of Public Reactions and Headline News of Ebola
2.3. Statistical Analysis
3. Results
3.1. EVD Epidemic Trend
3.2. Daily Baidu Index and Sina Micro Index
3.3. Daily Baidu Index for Ebola
3.3.1. Public Attention in the Chinese Mainland to the Ebola Outbreak of West Africa
3.3.2. Baidu Index of Available Cities/Provinces
3.3.3. Correlation Analysis of Possible Indicators and Public Reaction Online
3.4. Microblogs Related to Ebola Posted and Forwarded Daily on the Sina Microblog
3.4.1. Public Attention of the Chinese Mainland to the Ebola Outbreak of West Africa
3.4.2. Correlation Analysis of Possible Indicator and Public Reaction Online
3.5. Spatial Autocorrelation Analysis and Spatiotemporal Cluster Analysis
3.6. Qualitative Description of Possible Events during the Study Time
4. Discussion
4.1. Principal Findings
4.2. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leroy, E.; Gonzalez, J.P.; Baize, S. Ebola and Marburg haemorrhagic fever viruses: Major scientific advances, but a relatively minor public health threat for Africa. Clin. Microbiol. Infect. 2011, 17, 964–976. [Google Scholar] [CrossRef] [PubMed]
- The Epidemiology of Ebola Hemorrhagic Fever in Zaire. 1976. Available online: http://www.enivd.de/EBOLA/ebola-24.htm (accessed on 24 June 2015).
- World Health Organization. Ebola haemorrhagic fever in Sudan, 1976. Bull. World Health Organ. 1978, 56, 247–270. [Google Scholar]
- World Health Organization. WHO Statement on the Meeting of the International Health Regulations Emergency Committee regarding the 2014 Ebola Outbreak in West Africa 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Outbreaks Chronology: Ebola Hemorrhagic Fever 2014; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014. [Google Scholar]
- Formenty, P.; Libama, F.; Epelboin, A.; Allarangar, Y.; Leroy, E.; Moudzeo, H.; Tarangonia, P.; Molamou, A.; Lenzi, M.; Ait-Ikhlef, K.; et al. Outbreak of Ebola hemorrhagic fever in the Republic of the Congo, 2003: A new strategy? Med. Trop. (Mars) 2003, 63, 291–295. [Google Scholar] [PubMed]
- Georges, A.J.; Leroy, E.M.; Renaut, A.A.; Benissan, C.T.; Nabias, R.J.; Ngoc, M.T.; Obiang, P.I.; Lepage, J.P.; Bertherat, E.J.; Bénoni, D.D.; et al. Ebola hemorrhagic fever outbreaks in Gabon, 1994–1997: Epidemiologic and health control issues. J. Infect. Dis. 1999, 179 (Suppl. S1), S65–S75. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.L.; Weisfeld, J.S.; Webb, P.A.; Johnson, K.M.; Cairns, T.; Berquist, H. Ebola hemorrhagic fever: Tandala, Zaire, 1977–1978. J. Infect. Dis. 1980, 142, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Tshioko, F.K.; Heymann, D.L.; Le Guenno, B.; Nabeth, P.; Kerstiëns, B.; Fleerackers, Y.; Kilmarx, P.H.; Rodier, G.R.; Nkuku, O.; et al. The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. J. Infect. Dis. 1999, 179 (Suppl. S1), S76–S86. [Google Scholar] [CrossRef] [PubMed]
- Leroy, E.M.; Rouquet, P.; Formenty, P.; Souquiere, S.; Kilbourne, A.; Froment, J.-M.; Bermejo, M.; Smit, S.; Karesh, W.; Swanepoel, R.; et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 2004, 303, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Nkoghe, D.; Kone, M.L.; Yada, A.; Leroy, E. A limited outbreak of Ebola haemorrhagic fever in Etoumbi, Republic of Congo, 2005. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Keïta, S.; de Clerck, H.; et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Goeijenbier, M.; van Kampen, J.J.; Reusken, C.B.; Koopmans, M.P.; van Gorp, E.C. Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis. Neth. J. Med. 2014, 72, 442–448. [Google Scholar] [PubMed]
- Bah, E.I.; Lamah, M.C.; Fletcher, T.; Jacob, S.T.; Brett-Major, D.M.; Sall, A.A.; Shindo, N.; Fischer, W.A.; Lamontagne, F.; Saliou, S.M.; et al. Clinical presentation of patients with Ebola virus disease in Conakry, Guinea. N. Engl. J. Med. 2015, 372, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.; Traore, F.A.; Sako, F.B.; Kpamy, D.O.; Bah, E.I.; Poncin, M.; Keit, S.; Cisse, M.; Touré, A. Ebola outbreak in Conakry, Guinea: Epidemiological, clinical, and outcome features. Med. Mal. Infect. 2014, 44, 491–494. [Google Scholar] [CrossRef] [PubMed]
- WHO Ebola Response Team. Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. N. Engl. J. Med. 2014, 371, 1481–1495. [Google Scholar]
- 34th Statistical Reports on Internet Development in China. Available online: http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201407/P020140721507223212132.pdf (accessed on 24 June 2015).
- Gu, H.; Chen, B.; Zhu, H.; Jiang, T.; Wang, X.; Chen, L.; Jiang, Z.; Zheng, D.; Jiang, J. Importance of Internet surveillance in public health emergency control and prevention: Evidence from a digital epidemiologic study during avian influenza A H7N9 outbreaks. J. Med. Internet Res. 2014, 16, e20. [Google Scholar] [CrossRef] [PubMed]
- Baidu Index. Available online: http://index.baidu.com/ (accessed on 24 June 2015).
- Chinese Internet Users Search Behavior Study. Available online: http://www.cnnic.cn/hlwfzyj/hlwxzbg/201410/P020150104459023035664.pdf (accessed 24 June 2015).
- Chew, C.; Eysenbach, G. Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS ONE 2010, 5, e14118. [Google Scholar] [CrossRef] [PubMed]
- Signorini, A.; Segre, A.M.; Polgreen, P.M. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 2011, 6, e19467. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-K.; Seok, J.H.; Oh, J.S.; Lee, H.W.; Kim, K.H. Use of hangeul twitter to track and predict human influenza infection. PLoS ONE 2013, 8, e69305. [Google Scholar] [CrossRef] [PubMed]
- Charles-Smith, L.E.; Reynolds, T.L.; Cameron, M.A.; Conway, M.; Lau, E.H.Y.; Olsen, J.M.; Pavlin, J.A.; Shigematsu, M.; Streichert, L.C.; Suda, K.J.; et al. Using social media to predict and track disease outbreaks. Environ. Health Perspect. 2012, 120, A30–A33. [Google Scholar]
- Fung, I.C.; Fu, K.W.; Ying, Y.; Schaible, B.; Hao, Y.; Chan, C.H.; Tse, Z.T. Chinese social media reaction to the MERS-CoV and avian influenza A (H7N9) outbreaks. Infect. Dis. Poverty 2013, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, T.M.; Rajic, A.; Young, I.; Robiadek, K.; Pham, M.T.; Funk, J.A. Scoping review on search queries and social media for disease surveillance: A chronology of innovation. J. Med. Internet Res. 2013, 15, e147. [Google Scholar] [CrossRef] [PubMed]
- Achrekar, H.; Gandhe, A.; Lazarus, R.; Yu, S.-H.; Liu, B. Predicting flu trends using twitter data. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011; pp. 702–707.
- Gu, Y.; Chen, F.; Liu, T.; Lv, X.; Shao, Z.; Lin, H.; Liang, C.; Zeng, W.; Xiao, J.; Zhang, Y.; et al. Early detection of an epidemic erythromelalgia outbreak using Baidu search data. Sci. Rep. 2015, 5, 12649. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Nsoesie, E.O.; Lv, B.; Peng, G.; Chunara, R.; Brownstein, J.S. Monitoring influenza epidemics in China with search query from Baidu. PLoS ONE 2013, 8, e64323. [Google Scholar] [CrossRef] [PubMed]
- Sina Micro Index. Available online: http://data.weibo.com/index (accessed on 24 June 2015).
- 33rd Statistical Reports on Internet Development in China. Available online: http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/P020140305346585959798.pdf (accessed on 24 June 2015).
- Baidu News. Available online: //news.baidu.com/?tn=news (accessed on 24 June 2015).
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kulldorff, M. SaTScan User Guide for Version 9.0; Department of Ambulatory Care and Prevention, Harvard Medical School: Boston, MA, USA, 2010. [Google Scholar]
- Briand, S.; Bertherat, E.; Cox, P.; Formenty, P.; Kieny, M.-P.; Myhre, J.K.; Roth, C.; Shindo, N.; Dye, C. The international Ebola emergency. N. Engl. J. Med. 2014, 371, 1180–1183. [Google Scholar] [CrossRef] [PubMed]
- Dituhui. Available online: http://www.dituhui.com/ (accessed on 24 June 2015).
- Xie, T.; Yang, Z.; Yang, S.; Wu, N.; Li, L. Correlation between reported human infection with avian influenza A H7N9 virus and cyber user awareness: What can we learn from digital epidemiology? Int. J. Infect. Dis. 2014, 22, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, J.M.; Jiang, Z.; Shao, J.; Jiang, T.; Wang, Z.; Liu, K.; Tang, S.; Gu, H.; Jiang, J. Media and public reactions toward vaccination during the “hepatitis B vaccine crisis” in China. Vaccine 2015, 33, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Z.; Qi, X.; Zhang, X.; Chen, H. Assessing cyber-user awareness of an emerging infectious disease: Evidence from human infections with avian influenza A H7N9 in Zhejiang, China. Int. J. Infect. Dis. 2015, 40, 34–36. [Google Scholar] [CrossRef] [PubMed]
- White, L.F.; Pagano, M. A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stat. Med. 2008, 27, 2999–3016. [Google Scholar] [CrossRef] [PubMed]
- Legrand, J.; Grais, R.F.; Boelle, P.Y.; Valleron, A.J.; Flahault, A. Understanding the dynamics of Ebola epidemics. Epidemiol. Infect. 2007, 135, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.J.; Bjornstad, O.N.; Dobson, A.P. Estimation and inference of R0 of an infectious pathogen by a removal method. Math. Biosci. 2005, 198, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Camacho, A.; Kucharski, A.J.; Funk, S.; Breman, J.; Piot, P.; Edmunds, W.J. Potential for large outbreaks of Ebola virus disease. Epidemics 2014, 9, 70–78. [Google Scholar] [CrossRef] [PubMed]
Province/City | Centralized Tendency * | Netizen Number (1/100 Million) | Average BDI (1/100 Million) |
---|---|---|---|
Beijing | 1917 | 1556 | 1.23 |
Shanghai | 1646 | 1683 | 0.98 |
Guangdong | 2849 | 6992 | 0.41 |
Fujian | 1224 | 2402 | 0.51 |
Tianjin | 792 | 866 | 0.91 |
Zhejiang | 1962 | 3330 | 0.59 |
Liaoning | 1078 | 2453 | 0.44 |
Jiangsu | 2214 | 4095 | 0.54 |
Xinjiang | 446 | 1094 | 0.41 |
Shanxi | 714 | 1755 | 0.41 |
Qinghai | 195 | 274 | 0.71 |
Hebei | 1442 | 3389 | 0.43 |
Hainan | 366 | 411 | 0.89 |
Shaanxi | 966 | 1689 | 0.57 |
Shandong | 1576 | 4329 | 0.36 |
Chongqing | 691 | 1293 | 0.53 |
Inner Mongolia | 499 | 1093 | 0.46 |
Ningxia | 210 | 283 | 0.74 |
Hubei | 1113 | 2491 | 0.45 |
Jilin | 579 | 1163 | 0.50 |
Heilongjiang | 661 | 1514 | 0.44 |
Guangxi | 863 | 1774 | 0.49 |
Tibet | 118 | 115 | 1.03 |
Hunan | 1135 | 2410 | 0.47 |
Anhui | 1167 | 2150 | 0.54 |
Sichuan | 1272 | 2835 | 0.45 |
Henan | 1294 | 3283 | 0.39 |
Gansu | 392 | 894 | 0.44 |
Guizhou | 515 | 1146 | 0.45 |
Yunnan | 557 | 1528 | 0.36 |
Jiangxi | 791 | 1468 | 0.54 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Li, L.; Jiang, T.; Chen, B.; Jiang, Z.; Wang, Z.; Chen, Y.; Jiang, J.; Gu, H. Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform. Int. J. Environ. Res. Public Health 2016, 13, 780. https://doi.org/10.3390/ijerph13080780
Liu K, Li L, Jiang T, Chen B, Jiang Z, Wang Z, Chen Y, Jiang J, Gu H. Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform. International Journal of Environmental Research and Public Health. 2016; 13(8):780. https://doi.org/10.3390/ijerph13080780
Chicago/Turabian StyleLiu, Kui, Li Li, Tao Jiang, Bin Chen, Zhenggang Jiang, Zhengting Wang, Yongdi Chen, Jianmin Jiang, and Hua Gu. 2016. "Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform" International Journal of Environmental Research and Public Health 13, no. 8: 780. https://doi.org/10.3390/ijerph13080780
APA StyleLiu, K., Li, L., Jiang, T., Chen, B., Jiang, Z., Wang, Z., Chen, Y., Jiang, J., & Gu, H. (2016). Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform. International Journal of Environmental Research and Public Health, 13(8), 780. https://doi.org/10.3390/ijerph13080780