Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site and Sampling Points
2.2. Sample Collection
2.3. Isolation and DNA Extraction
2.4. Molecular Identification and Characterization of the Recovered E. coli Isolates
2.5. Antimicrobial Susceptibility Pattern of the Confirmed E. coli Strains
2.6. Interpretation of Multiple Antibiotic-Resistance Index (MARI)
3. Results
3.1. Molecular Identification and Characterization of the Recovered E. coli Isolates
3.2. Antimicrobial Susceptibility Pattern of the Confirmed E. coli Pathotypes
3.3. Multiple Antibiotic-Resistance Index (MARI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hlavsa, M.C.; Roberts, V.A.; Anderson, A.R.; Hill, V.R.; Kahler, A.M.; Orr, M.; Garrison, L.E.; Hicks, L.A.; Newton, A.; Hilborn, E.D.; et al. Surveillance for waterborne disease outbreaks and other health events associated with recreational water—United States, 2007–2008. MMWR Surveill. Summ. 2011, 60, 1–32. [Google Scholar] [PubMed]
- Gorde, S.P.; Jadhav, M.V. Assessment of water quality parameters: A review. J. Eng. Res. Appl. 2013, 6, 2029–2035. [Google Scholar]
- Okoh, A.I.; Odjadjare, E.E.; Igbinosa, E.O.; Osode, A.N. Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr. J. Biotechnol. 2007, 6. [Google Scholar] [CrossRef]
- Lebaron, P.; Cournoyer, B.; Lemarchand, K.; Nazaret, S.; Servais, P. Environmental and human pathogenic microorganisms. In Environmental Microbiology: Fundamentals and Applications; Springer: Dordrecht, The Netherlands, 2015; pp. 619–658. [Google Scholar]
- Borowy, I. Global health and development: Conceptualizing health between economic growth and environmental sustainability. J. Hist. Med. Allied Sci. 2012, 68, 451–485. [Google Scholar] [CrossRef] [PubMed]
- DuBois, B.B. Beaches, People, and Change: A Political Ecology of Rockaway Beach after Hurricane Sandy. Ph.D. Thesis, The City University of New York, New York, NY, USA, 2016. [Google Scholar]
- Brown, A.C.; McLachlan, A. Sandy shore ecosystems and the threats facing them: Some predictions for the year 2025. Environ. Conserv. 2002, 29, 62–77. [Google Scholar] [CrossRef]
- Cloutier, D.D. Microbial Communities and the Diverse Ecology of Fecal Indicators at Lake Michigan Beaches. Ph.D. Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2017. [Google Scholar]
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, G.S.; Wennberg, A.C.; Nesheim, I.; Tryland, I. Diverse land use and the impact on (irrigation) water quality and need for measures—A case study of a Norwegian river. Int. J. Environ. Res. Public Health 2015, 12, 6979–7001. [Google Scholar] [CrossRef] [PubMed]
- Okoh, A.I.; Sibanda, T.; Gusha, S.S. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment. Int. J. Environ. Res. Public Health 2010, 7, 2620–2637. [Google Scholar] [CrossRef] [PubMed]
- Soller, J.A.; Schoen, M.E.; Bartrand, T.; Ravenscroft, J.E.; Ashbolt, N.J. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 2010, 44, 4674–4691. [Google Scholar] [CrossRef] [PubMed]
- Watkins, E.R.; Maiden, M.C.; Gupta, S. Metabolic competition as a driver of bacterial population structure. Future Microbiol. 2016, 11, 1339–1357. [Google Scholar] [CrossRef] [PubMed]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Titilawo, Y.; Obi, L.; Okoh, A. Occurrence of virulence gene signatures associated with diarrhoeagenic and non-diarrhoeagenic pathovars of Escherichia coli isolates from some selected rivers in South-Western Nigeria. BMC Microbiol. 2015, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Richards, V.P.; Lefébure, T.; Bitar, P.D.P.; Dogan, B.; Simpson, K.W.; Schukken, Y.H.; Stanhope, M.J. Genome based phylogeny and comparative genomic analysis of intra-mammary pathogenic Escherichia coli. PLoS ONE 2015, 10, e0119799. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Younis, W.; Seleem, M.N. Repurposing celecoxib as a topical antimicrobial agent. Front. Microbiol. 2015, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Agga, G.E.; Arthur, T.M.; Durso, L.M.; Harhay, D.M.; Schmidt, J.W. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. PLoS ONE 2015, 10, e0132586. [Google Scholar] [CrossRef] [PubMed]
- Adefisoye, M.A.; Okoh, A.I. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiol. Open 2016, 5, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Torres, B.; Jaenecke, S.; Timmis, K.N.; García, J.L.; Díaz, E. A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology 2003, 149, 3595–3601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finley, R.L.; Collignon, P.; Larsson, D.J.; McEwen, S.A.; Li, X.Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Cagney, C.; Crowley, H.; Duffy, G.; Sheridan, J.J.; O’Brien, S.; Carney, E.; Anderson, W.; McDowell, D.A.; Blair, I.S.; Bishop, R.H. Prevalence and numbers of Escherichia coli O157: H7 in minced beef and beef burgers from butcher shops and supermarkets in the Republic of Ireland. Food Microbiol. 2004, 21, 203–212. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2014. [Google Scholar]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [PubMed]
- Whitman, R.L.; Nevers, M.B.; Korinek, G.C.; Byappanahalli, M.N. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach. Appl. Environ. Microbiol. 2004, 70, 4276–4285. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Z.; O’Carroll, D.M.; Vogel, L.J.; Robinson, C.E. Effect of low energy waves on the accumulation and transport of fecal indicator bacteria in sand and pore water at freshwater beaches. Environ. Sci. Technol. 2017, 51, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Eisenberg, J.N.; Kleinbaum, D.G.; Cevallos, W.; Trueba, G.; Levy, K. Spatial variability of Escherichia coli in rivers of Northern Coastal Ecuador. Water 2015, 7, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Vogel, L.J.; O’Carroll, D.M.; Edge, T.A.; Robinson, C.E. Release of Escherichia coli from foreshore sand and pore water during intensified wave conditions at a recreational beach. Environ. Sci. Technol. 2016, 50, 5676–5684. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.L.; Palmer, C.J.; Sangermano, L.R. Detection of Escherichia coli in sewage and sludge by polymerase chain reaction. Appl. Environ. Microbiol. 1993, 59, 353–357. [Google Scholar] [PubMed]
- De Carvalho, D.G.; Neto, J.A.B. Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean Coast. Manag. 2016, 128, 10–17. [Google Scholar] [CrossRef]
- Schoen, M.E.; Ashbolt, N.J. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ. Sci. Technol. 2010, 44, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Andrade, V.; Zampieri, B.D.B.; Ballesteros, E.R.; Pinto, A.B.; De Oliveira, A.J.F.C. Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands. Environ. Monit. Assess. 2015, 187, 342. [Google Scholar] [CrossRef] [PubMed]
- Partyka, M.L.; Bond, R.F.; Chase, J.A.; Atwill, E.R. Monitoring bacterial indicators of water quality in a tidally influenced delta: A Sisyphean pursuit. Sci. Total Environ. 2017, 578, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Nevers, M.B.; Whitman, R.L.; Ishii, S. Application of a microfluidic quantitative polymerase chain reaction technique to monitor bacterial pathogens in beach water and complex environmental matrices. Environ. Sci. Technol. Lett. 2015, 2, 347–351. [Google Scholar] [CrossRef]
- Maloo, A.; Fulke, A.B.; Mulani, N.; Sukumaran, S.; Ram, A. Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: A potential public health risk. Environ. Sci. Pollut. Res. 2017, 24, 11504–11517. [Google Scholar] [CrossRef] [PubMed]
- Stoll, C.; Sidhu, J.P.S.; Tiehm, A.; Toze, S. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ. Sci. Technol. 2012, 46, 9716–9726. [Google Scholar] [CrossRef] [PubMed]
- Laroche-Ajzenberg, E.; Flores Ribeiro, A.; Bodilis, J.; Riah, W.; Buquet, S.; Chaftar, N.; Pawlak, B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli isolated from environmental waters contaminated by human faecal wastes. J. Appl. Microbiol. 2015, 118, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Corsi, S.R.; Borchardt, M.A.; Carvin, R.B.; Burch, T.R.; Spencer, S.K.; Lutz, M.A.; McDermott, C.M.; Busse, K.M.; Kleinheinz, G.T.; Feng, X.; et al. Human and bovine viruses and bacteria at three Great Lakes beaches: Environmental variable associations and health risk. Environ. Sci. Technol. 2015, 50, 987–995. [Google Scholar] [CrossRef] [PubMed]
Target Strain | Target Gene | Primer Sequence (5′→3′) | Amplicon Size (bp) | PCR Cycling Condition |
---|---|---|---|---|
E. coli | uidA | F: AAA ACG GCA AGA AAA AGC AG | 147 | Initial denaturation of 5 min at 94 °C followed by 35 cycles, denaturation at 95 °C for 30 s, annealing at 58 °C for 1 min, extension at 72 °C for 1 min and final extension at 72 °C for 8 min |
R: ACG CGT GGT TAA CAG TCT TGC G | ||||
EPEC | eae | F: TCA ATG CAG TTC CGT TAT CAG TT | 482 | Initial denaturation of 15 min at 95 °C followed by 35 cycles, denaturation at 94 °C for 45 s, annealing at 55 °C for 45 s, extension at 68 °C for 2 min and final extension at 72 °C for 5 min |
R: GTA AAG TCC GTT ACC CCA ACC TG | ||||
R: GGA ATC AGA CGC AGA CTG GTA GT | ||||
ETEC | lt | F: GGC GAC AGA TTA TAC CGT GC | 450 | Initial denaturation of 2 min at 94 °C followed by 35 cycles, denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 min and final extension at 72 °C for 5 min |
R: CGG TCT CTA TAT TCC CTG TT | ||||
EAEC | eagg | F: AGA CTC TGG CGA AAG ACT GTA TC | 194 | Initial denaturation of 15 min at 95 °C followed by 35 cycles, denaturation at 94 °C for 45 s, annealing at 55 °C for 45 s, extension at 68 °C for 2 min and final extension at 72 °C for 5 min |
R: ATG GCT GTC TGT AAT AGA TGA GAA C | ||||
EIEC | ipaH | F: CTC GGC ACG TTT TAA TAG TCT GG | 933 | Initial denaturation of 2 min at 94 °C followed by 35 cycles, denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 min and final extension at 72 °C for 5 min |
R: GTG GAG AGC TGA AGT TTC TCT GC | ||||
DAEC | daaE | F: GAA CGT TGG TTA ATG TGG GGT AA | 542 | Initial denaturation of 2 min at 94 °C followed by 40 cycles, denaturation at 92 °C for 30 s, annealing at 59 °C for 30 s, extension at 72 °C for 30 s and final extension at 72 °C for 5 min |
R: TAT TCA CCG GTC GGT TAT CAG T | ||||
EHEC | stx1 | F: CAG TTA ATG TGG TGG CGA AGG | 384 | Initial denaturation of 15 min at 95 °C followed by 35 cycles, denaturation at 94 °C for 45 s, annealing at 55 °C for 45 s, extension at 68 °C for 2 min and final extension at 72 °C for 5 min |
R: CAC CAG ACA ATG TAA CCG CTG | ||||
NMEC | ibeA | F: TGG AAC CCC GCT CGT AAT ATA C | 342 | Initial denaturation of 2 min at 94 °C followed by 30 cycles, denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 min and final extension at 72 °C for 5 min |
R: CTG CCT GTT CAA GCA TTG CA | ||||
UPEC | papC | F: GAC GGC TGT ACT GCA GGG TGT GGC G | 328 | Initial denaturation of 2 min at 94 °C followed by 30 cycles, denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 min and final extension at 72 °C for 5 min |
R: ATA TCC TTT CTG CAG GGA TGC AAT A |
No. of Isolates Screened | Pathotype/Target Gene | No. of Positive Isolates (%) |
---|---|---|
107 | EPEC/eae | 11 (10.3%) |
107 | ETEC/lt | 0 |
107 | EAEC/eagg | 0 |
107 | EIEC/ipaH | 14 (13.1%) |
107 | DAEC/daaE | 0 |
107 | EHEC/stx1 | 0 |
107 | NMEC/ibeA | 48 (44.9%) |
107 | UPEC/papC | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebomah, K.E.; Adefisoye, M.A.; Okoh, A.I. Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health. Int. J. Environ. Res. Public Health 2018, 15, 1506. https://doi.org/10.3390/ijerph15071506
Ebomah KE, Adefisoye MA, Okoh AI. Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health. International Journal of Environmental Research and Public Health. 2018; 15(7):1506. https://doi.org/10.3390/ijerph15071506
Chicago/Turabian StyleEbomah, Kingsley Ehi, Martins Ajibade Adefisoye, and Anthony Ifeanyi Okoh. 2018. "Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health" International Journal of Environmental Research and Public Health 15, no. 7: 1506. https://doi.org/10.3390/ijerph15071506
APA StyleEbomah, K. E., Adefisoye, M. A., & Okoh, A. I. (2018). Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health. International Journal of Environmental Research and Public Health, 15(7), 1506. https://doi.org/10.3390/ijerph15071506