Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Settings
2.2. Sampling and Analyses
2.3. Data Analyzing
3. Results and Discussions
3.1. Basic Statistical Results for the Contents of Major Elements and Potentially Toxic Elements
3.2. Influencing Factors for the Variation of Potentially Toxic Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494. [Google Scholar] [CrossRef]
- Crutzen, P.J. The “anthropocene”. In Earth System Science in the Anthropocene; Springer: Berlin, Germany, 2006; pp. 13–18. [Google Scholar]
- Falkowski, P.; Scholes, R.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Senesil, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef]
- Jia, Z.; Li, S.; Wang, L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci. Rep. 2018, 8, 3256. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Naccari, C.; Cicero, N.; Ferrantelli, V.; Giangrosso, G.; Vella, A.; Macaluso, A.; Naccari, F.; Dugo, G. Toxic Metals in Pelagic, Benthic and Demersal Fish Species from Mediterranean FAO Zone 37. Bull. Environ. Contam. Toxicol. 2015, 95, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Salvo, A.; Cicero, N.; Vadalà, R.; Mottese, A.F.; Bua, D.; Mallamace, D.; Giannetto, C.; Dugo, G. Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat. Prod. Res. 2016, 30, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Zhou, Y.; Chen, Z.; Jia, J.; Bao, X. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619, 1349–1357. [Google Scholar] [CrossRef]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Lewis, M. Lead and other heavy metals in soils impacted by exterior legacy paint in residential areas of south west England. Sci. Total Environ. 2018, 619, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Han, Y.; Du, P.; Cao, J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J. Geochemical evidence of the anthropogenic alteration of element composition in lacustrine sediments from Wuliangsu Lake, North China. Quat. Int. 2013, 306, 107–113. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, Northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, T.; Wu, C.; He, Z.; Japenga, J.; Deng, M.; Yang, X. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J. Hazard. Mater. 2015, 299, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, H. Application of Stochastic Models in Identification and Apportionment of Heavy Metal Pollution Sources in the Surface Soils of a Large-Scale Region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid. Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Chuluun, T.; Ojima, D. Land use change and carbon cycle in arid and semi-arid lands of East and Central Asia. Sci. China Ser. C 2002, 45, 48–54. [Google Scholar]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration in soils of central Asia. Land Degrad. Dev. 2004, 15, 563–572. [Google Scholar] [CrossRef]
- Funakawa, S.; Kosaki, T. Potential risk of soil salinization in different regions of Central Asia with special reference to salt reserves in deep layers of soils. Soil Sci. Plant Nut. 2007, 53, 634–649. [Google Scholar] [CrossRef]
- O’Hara, S.L. Irrigation and land degradation: Implications for agriculture in Turkmenistan, Central Asia. J. Arid Environ. 1997, 37, 165–179. [Google Scholar] [CrossRef]
- Saiko, T.A.; Zonn, I.S. Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Li, Y.; Liu, W. Anthropogenically disturbed potentially toxic elements in roadside topsoils of a suburban region of Bishkek, Central Asia. Soil Use Manag. 2019, 35, 283–292. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Feng, S.; Huang, W.; Liu, J.; Zhou, A. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat. Sci. Rev. 2015, 107, 98–111. [Google Scholar] [CrossRef]
- He, Y.; Zhao, C.; Song, M.; Liu, W.; Chen, F.; Zhang, D.; Liu, Z. Onset of frequent dust storms in northern China at ~AD 1100. Sci. Rep. 2015, 5, 17111. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Guo, J.-Y.; Liu, G.-R.; Shi, G.-L.; Guo, C.-S.; Zhang, Y.; Feng, Y.-C. Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China. Sci. Total Environ. 2014, 470, 519–526. [Google Scholar] [CrossRef]
- Guo, J.; Wu, F.; Luo, X.; Liang, Z.; Liao, H.; Zhang, R.; Li, W.; Zhao, X.; Chen, S.; Mai, B. Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China. Environ. Pollut. 2010, 158, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mu, S.; Bao, A.; Zhang, D.; Pan, X. Effects of salinity and (an) ions on arsenic behavior in sediment of Bosten Lake, Northwest China. Environ. Earth Sci. 2015, 73, 4707–4716. [Google Scholar] [CrossRef]
- Guo, W.; Huo, S.; Xi, B.; Zhang, J.; Wu, F. Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecol. Eng. 2015, 81, 243–255. [Google Scholar] [CrossRef]
- Shen, B.; Jinglu, W.U.; Zhao, Z. Organochlorine pesticides and polycyclic aromatic hydrocarbons in water and sediment of the Bosten Lake, Northwest China. J. Arid Land 2017, 9, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.C. Geographically Weighted Regression. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin, Germany, 2014; pp. 1435–1459. [Google Scholar]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-S.; Yang, H.; Guo, F.; Han, R.-M. Spatial patterns and origins of heavy metals in Sheyang River catchment in Jiangsu, China based on geographically weighted regression. Sci. Total Environ. 2017, 580, 1518–1529. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Ma, Z.; Bi, J. Improving satellite-based PM 2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting. Sci. Rep. 2017, 7, 7048. [Google Scholar] [CrossRef]
- Chen, F.; Huang, X.; Zhang, J.; Holmes, J.A.; Chen, J. Humid Little Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci. China Ser. D 2006, 49, 1280–1290. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Li, J. Spatial pattern and evolution of oases in the Yanqi Basin, Xinjiang. Geogr. Res. 2006, 25, 350–358. [Google Scholar] [CrossRef]
- Wünnemann, B.; Mischke, S.; Chen, F. A Holocene sedimentary record from Bosten Lake, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 223–238. [Google Scholar] [CrossRef]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor. Appl. Climatol. 2015, 119, 341–351. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Perry, L.; Li, W. Implications of climate change for water management of an arid inland lake in Northwest China. Lake Reserv. Manag. 2015, 31, 202–213. [Google Scholar] [CrossRef]
- Wang, S.; Radny, D.; Huang, S.; Zhuang, L.; Zhao, S.; Berg, M.; Jetten, M.S.M.; Zhu, G. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Sci. Rep. 2017, 7, 40173. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Nema, A.K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere 2012, 87, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Zhao, X.; Wang, Y.; Deng, W. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotox. Environ. Saf. 2014, 108, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Grégoire, G. Multiple Linear Regression. Eur. Astron. Soc. Publ. Ser. 2014, 66, 45–72. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Spatial variations in school performance: A local analysis using geographically weighted regression. Geogr. Environ. Model. 2001, 5, 43–66. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.-G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Nakaya, T. GWR4 User Manual. Available online: http://www.st-andrews.ac.uk/geoinformatics/wp-content/uploads/GWR4manual_201311. pdf (accessed on 4 November 2013).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.-G.; Gao, Y.-P.; Lin, Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl. Geochem. 2016, 67, 52–58. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox. Environ. Safe 2015, 120, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Bhattacharya, T.; Singh, G.; Maity, J.P. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotox. Environ. Safe 2014, 100, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, S.; Li, X. Determining the anthropogenic contribution of heavy metal accumulations around a typical industrial town: Xushe, China. J. Geochem. Explor. 2011, 110, 92–97. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2008, 160, 83. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Abuduwaili, J.; Li, Y.; Ge, Y. Controlling Factors and Pollution Assessment of Potentially Toxic Elements in Topsoils of the Issyk-Kul Lake Region, Central Asia. Soil. Sediment. Contam. 2018, 27, 147–160. [Google Scholar] [CrossRef]
Composition | Unit | LOD b | Basic Statistics | ||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Average | Standard Deviation | Standard Error | |||
TOM a | g kg−1 | 0.01 | 4.46 | 23.43 | 14.59 | 5.17 | 0.75 |
Fe | g kg−1 | 0.005 | 19.50 | 35.50 | 27.07 | 3.50 | 0.51 |
V | mg kg−1 | 2 | 54.50 | 94.18 | 72.83 | 9.09 | 1.31 |
Zn | mg kg−1 | 0.1 | 28.30 | 85.80 | 58.00 | 13.71 | 1.98 |
Cr | mg kg−1 | 0.1 | 32.27 | 74.05 | 49.60 | 8.69 | 1.25 |
Co | mg kg−1 | 0.01 | 5.46 | 12.84 | 8.92 | 1.62 | 0.23 |
Ni | mg kg−1 | 0.05 | 12.53 | 35.40 | 23.09 | 4.75 | 0.69 |
Cu | mg kg−1 | 0.02 | 5.46 | 28.94 | 17.94 | 5.20 | 0.75 |
As | mg kg−1 | 0.1 | 5.30 | 13.67 | 9.86 | 2.02 | 0.29 |
Cd | mg kg−1 | 0.01 | 0.09 | 0.20 | 0.15 | 0.03 | 0.00 |
Sb | mg kg−1 | 0.05 | 0.68 | 1.47 | 1.05 | 0.20 | 0.03 |
Tl | mg kg−1 | 0.02 | 0.34 | 0.58 | 0.44 | 0.05 | 0.01 |
Pb | mg kg−1 | 0.01 | 13.95 | 21.93 | 17.05 | 1.71 | 0.25 |
Hg | ng g−1 | 0.01 | 10.75 | 31.00 | 20.62 | 4.67 | 0.67 |
PTEs | Model Equation | RSE c | NSE d | PBIAS e | Performance Rating f |
---|---|---|---|---|---|
As a | [As] = 2.04 × 10−1 × [Fe] + 2.23 × 10−1 × [TOM] + 1.10 | 0.57 | 0.68 | 0.00 | Good |
Cd a | [Cd] = 2.42 × 10−3 × [Fe] + 4.15 × 10−3×[TOM] + 2.56 × 10−2 | 0.44 | 0.81 | −0.10 | Very good |
Sb a | [Sb] = 2.39 × 10−2 × [Fe] + 1.85 × 10−2 × [TOM] + 1.36 × 10−1 | 0.60 | 0.64 | −0.001 | Satisfactory |
Hg a | [Hg] = 1.85 × 10−1 × [Fe] + 4.23 × 10−1 × [TOM] + 9.45 | 0.83 | 0.31 | 0.00 | Unsatisfactory |
As b | [As]e = [β1]As × [Fe] + [β2]As × [TOM] + [β0]As | 0.39 | 0.85 | 0.03 | Very good |
Cd b | [Cd]e = [β1]Cd × [Fe] + [β2]Cd × [TOM] + [β0]Cd | 0.34 | 0.88 | 0.13 | Very good |
Sb b | [Sb]e = [β1]Sb × [Fe] + [β2]Sb × [TOM] + [β0]Sb | 0.51 | 0.74 | −0.20 | Good |
Hg b | [Hg]e = [β1]Hg × [Fe] + [β2]Hg × [TOM] + [β0]Hg | 0.68 | 0.54 | −0.36 | Satisfactory |
PTEs | Maximum | Reference Dose for Exposure Pathway (RfDi) [55] (mg kg−1 day−1) | Non-Carcinogenic Hazards Index | |||||
---|---|---|---|---|---|---|---|---|
RfDing | RfDdermal | RfDinh | HQing | HQinh | HQdermal | HI | ||
V | 13.7 mg kg−1 | 7.00 × 10−3 | 7.00 × 10−5 | 7.00 × 10−3 | 3.69 × 10−2 | 1.73 × 10−6 | 1.60 × 10−2 | 5.29 × 10−2 |
Zn | 0.2 mg kg−1 | 3.00 × 10−1 | 6.00 × 10−2 | 3.00 × 10−1 | 0 | 3.69 × 10−8 | 1.70 × 10−5 | 8.01 × 10−4 |
Cr | 1.5 mg kg−1 | 3.00 × 10−3 | 6.00 × 10−5 | 2.86 × 10−5 | 6.76 × 10−2 | 3.34 × 10−4 | 1.47 × 10−2 | 8.27 × 10−2 |
Co | 0.6 mg kg−1 | 2.00 × 10−2 | 1.60 × 10−2 | 5.69 × 10−6 | 1.76 × 10−3 | 2.91 × 10−4 | 9.56 × 10−6 | 2.06 × 10−3 |
Ni | 21.9 mg kg−1 | 2.00 × 10−2 | 5.40 × 10−3 | 2.00 × 10−2 | 4.85 × 10−3 | 2.28 × 10−7 | 7.81 × 10−5 | 4.93 × 10−3 |
Cu | 31.0 mg kg−1 | 4.00 × 10−2 | 1.20 × 10−2 | 4.00 × 10−2 | 1.98 × 10−3 | 9.33 × 10−8 | 2.87 × 10−5 | 2.01 × 10−3 |
As | 23.4 mg kg−1 | 3.00 × 10−4 | 1.23 × 10−4 | 3.00 × 10−4 | 1.25 × 10−1 | 5.88 × 10−6 | 3.97 × 10−2 | 1.65 × 10−1 |
Cd | 35.5 mg kg−1 | 1.00 × 10−3 | 1.00 × 10−5 | 1.00 × 10−3 | 5.50 × 10−4 | 2.59 × 10−8 | 2.39 × 10−4 | 7.89 × 10−4 |
Sb | 94.2 mg kg−1 | 4.00 × 10−4 | 8.00 × 10−6 | 4.01 × 10−4 | 1.01 × 10−2 | 4.73 × 10−7 | 2.19 × 10−3 | 1.22 × 10−2 |
Tl | 85.8 mg kg−1 | 8.00 × 10−5 | 1.00 × 10−5 | 8.00 × 10−5 | 2.00 × 10−2 | 9.42 × 10−7 | 6.96 × 10−4 | 2.07 × 10−2 |
Pb | 74.1 mg kg−1 | 3.50 × 10−3 | 5.25 × 10−4 | 3.51 × 10−3 | 1.72 × 10−2 | 8.06 × 10−7 | 4.98 × 10−4 | 1.77 × 10−2 |
Hg | 12.8 ng g−1 | 3.00 × 10−4 | 2.10 × 10−5 | 3.00 × 10−4 | 2.83 × 10−4 | 1.33 × 10−8 | 1.76 × 10−5 | 3.01 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Abuduwaili, J.; Liu, W. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia. Int. J. Environ. Res. Public Health 2019, 16, 3741. https://doi.org/10.3390/ijerph16193741
Ma L, Abuduwaili J, Liu W. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia. International Journal of Environmental Research and Public Health. 2019; 16(19):3741. https://doi.org/10.3390/ijerph16193741
Chicago/Turabian StyleMa, Long, Jilili Abuduwaili, and Wen Liu. 2019. "Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia" International Journal of Environmental Research and Public Health 16, no. 19: 3741. https://doi.org/10.3390/ijerph16193741