Impacts of Road Traffic Network and Socioeconomic Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. National Highway Network
2.3. Network Node Centrality
2.3.1. Classic Centrality Measures
2.3.2. Newly Proposed Centrality Measures
2.4. Statistical Analysis
μ = λW2μ + ε
ε ~ N (0, σ2In),
3. Results
3.1. Development of the Influenza A (H1N1) Pandemic in Mainland China in 2009
3.2. Characteristics of the National Highway Network
3.3. Correlation Analysis
3.4. Spatial Autoregressive Analysis
4. Discussion
5. Conclusions
Data Accessibility
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiao, H.; Tian, H.; Zhao, J.; Zhang, X.; Li, Y.; Liu, Y.; Liu, R.; Chen, T. Influenza A (H1N1) transmission by road traffic between cities and towns. Chin. Sci. Bull. 2011, 56, 2613–2620. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Z.; Wang, C.; Hui, P.M.; Liu, Z. Integrated travel network model for studying epidemics: Interplay between journeys and epidemic. Sci. Rep. 2015, 5, 11401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, S.; Salathe, M.; Jansen, V.A. Modelling the influence of human behaviour on the spread of infectious diseases: A review. J. R. Soc. Interface 2010, 7, 1247–1256. [Google Scholar] [CrossRef]
- Ni, S.; Weng, W. Impact of travel patterns on epidemic dynamics in heterogeneous spatial metapopulation networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 79, 016111. [Google Scholar] [CrossRef]
- Li, Q.; Cao, W.; Ren, H.; Ji, Z.; Jiang, H. Spatiotemporal responses of dengue fever transmission to the road network in an urban area. Acta Trop. 2018, 183, 8–13. [Google Scholar] [CrossRef]
- A Bozick, B.; Real, L.A. The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States. PLoS Pathog. 2015, 11, e1004898. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2009; China Statistics Press: Beijing, China, 2010.
- Peng, H.; Chen, K.; Wang, J.; Wang, Y. Travel choice characteristics of transportation corridor of Europe-Asia. J. Traffic Transp. Eng. 2005, 5, 120–123. [Google Scholar]
- Weng, W.; Ni, S. Evaluation of containment and mitigation strategies for an influenza A pandemic in China. Simulation 2015, 91, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.Q.; Wang, L.P.; de Vlas, S.J.; Liang, S.; Tong, S.L.; Li, Y.L.; Li, Y.P.; Qian, Q.; Yang, H.; Zhou, M.G.; et al. Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China. Am. J. Epidemiol. 2012, 175, 890–897. [Google Scholar] [CrossRef]
- Fang, L.Q.; de Vlas, S.J.; Liang, S.; Looman, C.W.; Gong, P.; Xu, B.; Yan, L.; Yang, H.; Richardus, J.H.; Cao, W.C. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China. PLoS ONE 2008, 3, e2268. [Google Scholar] [CrossRef]
- Mei, S.; Chen, B.; Zhu, Y.; Lees, M.H.; Boukhanovsky, A.V.; Sloot, P.M.A. Simulating city-level airborne infectious diseases. Comput. Environ. Urban Syst. 2015, 51, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.Q.; de Vlas, S.J.; Feng, D.; Liang, S.; Xu, Y.F.; Zhou, J.P.; Richardus, J.H.; Cao, W.C. Geographical spread of SARS in mainland China. Trop. Med. Int. Health 2009, 14 (Suppl. 1), 14–20. [Google Scholar] [CrossRef] [Green Version]
- Teurlai, M.; Huy, R.; Cazelles, B.; Duboz, R.; Baehr, C.; Vong, S. Can human movements explain heterogeneous propagation of dengue fever in Cambodia? PLoS Negl. Trop. Dis. 2012, 6, e1957. [Google Scholar] [CrossRef]
- Cao, C.; Xu, M.; Chang, C.; Xue, Y.; Zhong, S.; Fang, L.; Cao, W.; Zhang, H.; Gao, M.; He, Q.; et al. Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-modeling. Chin. Sci. Bull. 2010, 55, 4168–4178. [Google Scholar] [CrossRef]
- Yupiana, Y.; de Vlas, S.J.; Adnan, N.M.; Richardus, J.H. Risk factors of poultry outbreaks and human cases of H5N1 avian influenza virus infection in West Java Province, Indonesia. Int. J. Infect. Dis. 2010, 14, e800–e805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Choi, B.Y.; Jung, E. Metapopulation model using commuting flow for national spread of the 2009 H1N1 influenza virus in the Republic of Korea. J. Biol. 2018, 454, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Hu, S.; Cazelles, B.; Chowell, G.; Gao, L.; Laine, M.; Li, Y.; Yang, H.; Li, Y.; Yang, Q.; et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl. Acad. Sci. USA 2018, 115, 4707–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grantz, K.H.; Rane, M.S.; Salje, H.; Glass, G.E.; Schachterle, S.E.; Cummings, D.A. Disparities in influenza mortality and transmission related to sociodemographic factors within Chicago in the pandemic of 1918. Proc. Natl. Acad. Sci. USA 2016, 113, 13839–13844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, J.; Xu, C.; Liu, T. Modelling input-output flows of severe acute respiratory syndrome in mainland China. BMC Public Health 2016, 16, 191. [Google Scholar] [CrossRef]
- Dalziel, B.D.; Kissler, S.; Gog, J.R.; Viboud, C.; Bjørnstad, O.N.; Metcalf, C.J.E.; Grenfell, B.T. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 2018, 362, 75–79. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, X.; Chowell, G.; Huang, C.; Gao, L.; Chen, B.; Wang, Z.; Zhou, L.; He, X.; Liu, H. Urban structure and the risk of influenza A(H1N1) outbreaks in municipal districts. Sci. Bull. 2014, 59, 554–562. [Google Scholar] [CrossRef]
- MATLAB and Statistics Toolbox, R2013a; The MathWorks, Inc.: Natick, MA, USA, 2013.
- ArcGIS Desktop, Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011.
- Floyd, R.W. Algorithm 97: Shortest path. Commun. ACM 1962, 5, 345. [Google Scholar] [CrossRef]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Gabor Csardi, T.N. The igraph software package for complex network research. InterJournal Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Michishita, R.; Bing, X.; Yamada, I. Time-series network analysis of civil aviation in Japan, 1985-2005. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: The Built Environment and its Dynamics, Guangzhou, China, 28–29 June 2008. [Google Scholar]
- Bihu, W.; Junya, T.; Anmin, H.; Rong, Z.; Fudong, Q.; Fang, F. A study on destination choice behavior of Chinese urban residents. Acta Geogr. Sin. 1997, 52, 97–103. [Google Scholar]
- Chaolin, G.; Haifeng, P. Spatial relation and layers division of Chinese urban system based on gravity model. Geogr. Res. 2008, 27, 1–12. [Google Scholar]
- Zhang, Y. Spreading of Influenza A (H1N1) in Mainland China: Modeling and Analysis. Master’s Thesis, Beijing Normal University, Beijing, China, 2011. [Google Scholar]
- Lesage, J.P.; Pace, R.K. Spatial econometric modeling of origin-destination flows. J. Reg. Sci. 2010, 48, 941–967. [Google Scholar] [CrossRef]
- Cui-Ling, X.U.; Sun, S.H.; Zhang, Y.P.; Shi, J.H.; Xiang, N.J.; Wang, L.J.; Yuan, F.; Chen, M.; Chen, T.; Yang, J. Epidemiological characteristics of confirmed cases of pandemic influenza A(H1N1) 2009 in mainland China, 2009-2010. Dis. Surveill. 2011, 26, 780–784. [Google Scholar]
- Lee, S.S.; Wong, N.S. The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. J. Infect. 2011, 63, 274–280. [Google Scholar] [CrossRef]
- Tellier, R. Aerosol transmission of influenza A virus: A review of new studies. J. R. Soc. Interface 2009, 6, S783–S790. [Google Scholar] [CrossRef]
- Yu, H.; Cauchemez, S.; Donnelly, C.A.; Zhou, L.; Feng, L.; Xiang, N.; Zheng, J.; Ye, M.; Huai, Y.; Liao, Q.; et al. Transmission dynamics, border entry screening, and school holidays during the 2009 influenza A (H1N1) pandemic, China. Emerg. Infect. Dis. 2012, 18, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Grenfell, B.T. Discovering the phylodynamics of RNA viruses. PLoS Comput. Biol. 2009, 5, e1000505. [Google Scholar] [CrossRef] [PubMed]
- Bootsma, M.C.J.; Ferguson, N.M. The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7588–7593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauchemez, S.; Ferguson, N.M.; Wachtel, C.; Tegnell, A.; Saour, G.; Duncan, B.; Nicoll, A. Closure of schools during an influenza pandemic. Lancet Infect. Dis. 2009, 9, 473–481. [Google Scholar] [CrossRef]
- Cai, J.; Xu, B.; Chan, K.K.Y.; Zhang, X.; Zhang, B.; Chen, Z.; Xu, B. Roles of Different Transport Modes in the Spatial Spread of the 2009 Influenza A(H1N1) Pandemic in Mainland China. Int. J. Environ. Res. Public Health 2019, 16, 222. [Google Scholar] [CrossRef] [PubMed]
- Garske, T.; Yu, H.; Peng, Z.; Ye, M.; Zhou, H.; Cheng, X.; Wu, J.; Ferguson, N. Travel patterns in China. PLoS ONE 2011, 6, e16364. [Google Scholar] [CrossRef]
EF | Deg1 | Deg2 | Deg3 | Betw | Close | Eigen | SumR | McDis | Pig |
---|---|---|---|---|---|---|---|---|---|
CumInc | NS | NS | NS | NS | NS | NS | 0.354 *** | 0.258 *** | NS |
Onset | NS | NS | NS | NS | 0.208 *** | NS | −0.348 *** | 0.320 *** | −0.259 *** |
Duration | NS | NS | NS | NS | −0.126 * | NS | 0.265 *** | −0.369 *** | 0.271 *** |
VIF | Coefficient | |||
---|---|---|---|---|
CumInc a | Onset week | Duration | ||
Spatial dependence | ||||
ρ | 0.104 *** | 0.216 *** | 0.237 *** | |
λ | 0.177 | 0.055 | 0.292 ** | |
Effects | ||||
const | −0.071 ** | 0.625 *** | 0.300 *** | |
Urban ratio | 2.644 | −0.001 | −0.036 | −0.014 |
PopDensity | 2.375 | 0.205 * | −0.413 * | 0.803 *** |
PGDP | 4.047 | −0.140 * | −0.152 | −0.126 |
Income | 3.246 | 0.286 *** | −0.112 | 0.042 |
Hospital | 1.416 | 0.141 ** | 0.160 | −0.136 |
Hos-bed | 5.370 | −0.047 | −0.180 | 0.290 |
Doctor | 3.364 | −0.019 | −0.034 | −0.008 |
College | 6.281 | −0.001 | −0.277 | 0.541 ** |
MidSchool | 9.418 | −0.060 | 0.281 | −0.581 |
PriSchool | 7.165 | −0.056 | −0.070 | 0.235 |
CollegeStu | 3.917 | 0.147 ** | −0.130 | −0.022 |
MidSchoolStu | 2.398 | −0.084 | −0.218 | 0.179 |
PriSchoolStu | 3.017 | 0.137 | 0.331 | −0.123 |
Pig | 2.980 | −0.510 ** | 0.472 ** | |
closeness b | 17.128 | |||
SumRatio | 1.815 | 0.190 *** | −0.015 | −0.131 |
McDistance | 7.084 | 0.326 *** | 0.158 | −0.277 ** |
0.423 | 0.462 | 0.454 | ||
0.390 | 0.416 | 0.407 | ||
Log-likelihood | 388.970 | 121.302 | 122.541 | |
c, |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Tian, H.; Sabel, C.E.; Xu, B. Impacts of Road Traffic Network and Socioeconomic Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China. Int. J. Environ. Res. Public Health 2019, 16, 1223. https://doi.org/10.3390/ijerph16071223
Xu B, Tian H, Sabel CE, Xu B. Impacts of Road Traffic Network and Socioeconomic Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China. International Journal of Environmental Research and Public Health. 2019; 16(7):1223. https://doi.org/10.3390/ijerph16071223
Chicago/Turabian StyleXu, Bo, Huaiyu Tian, Clive Eric Sabel, and Bing Xu. 2019. "Impacts of Road Traffic Network and Socioeconomic Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China" International Journal of Environmental Research and Public Health 16, no. 7: 1223. https://doi.org/10.3390/ijerph16071223