Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.2.1. Neuromuscular Performance
2.2.2. Simulated Military Task Performance
2.3. Training Protocols
2.4. Statistical Analysis
3. Results
3.1. Neuromuscular Tests
3.2. Simulated Military Task Performance
3.2.1. Total Time
3.2.2. Five Meters Run from the Start
3.2.3. Ten Meters Crawl
3.2.4. Ten + Ten Meters Kettlebell Carry
3.2.5. Mannequin Drag
3.2.6. Ten Meters Run
3.2.7. Blood Lactate and Heart Rate
3.2.8. Associations between Body Composition, Physical Tests, and Simulated Military Task Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hendrickson, N.R.; Sharp, M.A.; Alemany, J.A.; Walker, L.A.; Harman, E.A.; Spiering, B.A.; Hatfield, D.L.; Yamamoto, L.M.; Maresh, C.M.; Kraemer, W.J.; et al. Combined resistance and endurance training improves physical capacity and performance on tactical occupational tasks. Eur. J. Appl. Physiol. 2010, 109, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Pihlainen, K.; Vaara, J.P.; Ojanen, T.; Santtila, M. Optimising training adaptations and performance in military environment. J. Sci. Med. Sport 2018, 21, 1131–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tharion, W.J.; Lieberman, H.R.; Montain, S.J.; Young, A.J.; Baker-Fulco, C.J.; Delany, J.P.; Hoyt, R.W. Energy requirements of military personnel. Appetite 2005, 44, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.K.; Probert, B.; Forbes-Ewan, C.; Coad, R.A. Australian Army Recruits in Training Display Symptoms of Overtraining. Mil. Med. 2006, 171, 1059–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henning, P.C.; Park, B.-S.; Kim, J.-S. Physiological Decrements during Sustained Military Operational Stress. Mil. Med. 2011, 176, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Alemany, J.A.; Nindl, B.C.; Kellogg, M.D.; Tharion, W.J.; Young, A.J.; Montain, S.J. Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J. Appl. Physiol. 2008, 105, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chester, A.L.; Edwards, A.M.; Crowe, M.; Quirk, F.H. Physiological, Biochemical, and Psychological Responses to Environmental Survival Training in the Royal Australian Air Force. Mil. Med. 2013, 178, e829–e835. [Google Scholar] [CrossRef] [Green Version]
- Kyröläinen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mäntysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 102, 539–546. [Google Scholar] [CrossRef]
- Tyyskä, J.; Kokko, J.; Salonen, M.; Koivu, M.; Kyröläinen, H. Association with physical fitness, serum hormones and sleep during a 15-day military field training. J. Sci. Med. Sport 2010, 13, 356–359. [Google Scholar] [CrossRef]
- Margolis, L.M.; Rood, J.; Champagne, C.; Young, A.J.; Castellani, J.W. Energy balance and body composition during US Army special forces training. Appl. Physiol. Nutr. Metab. 2013, 38, 396–400. [Google Scholar] [CrossRef]
- Nindl, B.C.; Barnes, B.R.; Alemany, J.A.; Frykman, P.N.; Shippee, R.L.; Friedl, K.E. Physiological Consequences of U.S. Army Ranger Training. Med. Sci. Sports Exerc. 2007, 39, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Leone, C.D.; Tharion, W.J.; Johnson, R.F.; Castellani, J.W.; Patton, J.F.; Montain, S.J. Physical performance responses during 72 h of military operational stress. Med. Sci. Sports Exerc. 2002, 34, 1814–1822. [Google Scholar] [CrossRef]
- Richmond, V.L.; Horner, F.E.; Wilkinson, D.M.; Rayson, M.P.; Wright, A.; Izard, R. Energy Balance and Physical Demands during an 8-Week Arduous Military Training Course. Mil. Med. 2014, 179, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Henning, P.C.; Scofield, D.E.; Spiering, B.A.; Staab, J.S.; Matheny, R.W.; Smith, M.A.; Bhasin, S.; Nindl, B.C. Recovery of Endocrine and Inflammatory Mediators Following an Extended Energy Deficit. J. Clin. Endocrinol. Metab. 2014, 99, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Diment, B.C.; Fortes, M.B.; Greeves, J.P.; Casey, A.; Costa, R.J.S.; Walters, R.; Walsh, N.P. Effect of daily mixed nutritional supplementation on immune indices in soldiers undertaking an 8-week arduous training programme. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 112, 1411–1418. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Canham-Chervak, M.; Hauret, K.; Patton, J.F.; Jones, B.H. Risk factors for training-related injuries among men and women in basic combat training. Med. Sci. Sports Exerc. 2001, 33, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Rosendal, L.; Langberg, H.; Flyvbjerg, A.; Frystyk, J.; Ørskov, H.; Kjaer, M. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J. Appl. Physiol. 2002, 93, 1669–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanskanen, M.M.; Kyröläinen, H.; Uusitalo, A.L.; Huovinen, J.; Nissilä, J.; Kinnunen, H.; Atalay, M.; Häkkinen, K. Serum Sex Hormone–Binding Globulin and Cortisol Concentrations are Associated with Overreaching during Strenuous Military Training. J. Strength Cond. Res. 2011, 25, 787–797. [Google Scholar] [CrossRef]
- Knapik, J.J.; E Redmond, J.; Grier, T.L.; A Sharp, M. Secular Trends in the Physical Fitness of United States Army Infantry Units and Infantry Soldiers, 1976–2015. Mil. Med. 2018, 183, e414–e426. [Google Scholar] [CrossRef] [Green Version]
- Ojanen, M.T.; Häkkinen, K.; Vasankari, T.; Kyröläinen, H. Changes in Physical Performance during 21 d of Military Field Training in Warfighters. Mil. Med. 2018, 183, e174–e181. [Google Scholar] [CrossRef] [Green Version]
- Santtila, M.; Pihlainen, K.; Viskari, J.; Kyröläinen, H. Optimal Physical Training during Military Basic Training Period. J. Strength Cond. Res. 2015, 29, S154–S157. [Google Scholar] [CrossRef] [PubMed]
- Abt, J.P.; Perlsweig, K.; Nagai, T.; Sell, T.C.; Wirt, C.M.D.; Lephart, S.M. Effects of Age and Military Service on Strength and Physiological Characteristics of U.S. Army Soldiers. Mil. Med. 2016, 181, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.C.; Mongwe, L.; Van Rensburg, D.C.J.; Fletcher, L.; Wood, P.; Terblanche, E.; Du Toit, P.J.; Grant, T.C. The Difference Between Exercise-Induced Autonomic and Fitness Changes Measured after 12 and 20 Weeks of Medium-to-High Intensity Military Training. J. Strength Cond. Res. 2016, 30, 2453–2459, Erratum in J. Strength Cond. Res. 2017, 31, e67. [Google Scholar] [CrossRef] [PubMed]
- Lester, M.E.; Sharp, M.A.; Werling, W.C.; Walker, L.A.; Cohen, B.S.; Ruediger, T.M. Effect of Specific Short-Term Physical Training on Fitness Measures in Conditioned Men. J. Strength Cond. Res. 2014, 28, 679–688. [Google Scholar] [CrossRef]
- Solberg, P.A.; Paulsen, G.; Slaathaug, O.G.; Skare, M.; Wood, D.; Huls, S.; Raastad, T. Development and Implementation of a New Physical Training Concept in the Norwegian Navy Special Operations Command. J. Strength Cond. Res. 2015, 29, S204–S210. [Google Scholar] [CrossRef]
- Sporiš, G.; Harasin, D.; Baić, M.; Krističević, T.; Krakan, I.; Milanović, Z.; Cular, D.; Bagarić-Krakan, L. Effects of two different 5 weeks training programs on the physical fitness of military recruits. Coll. Antropol. 2014, 38, S157–S164. [Google Scholar]
- Vantarakis, A.; Chatzinikolaou, A.; Avloniti, A.; Vezos, N.; Douroudos, I.I.; Draganidis, D.; Jamurtas, A.Z.; Kambas, A.; Kalligeros, S.; Fatouros, I.G. A 2-Month Linear Periodized Resistance Exercise Training Improved Musculoskeletal Fitness and Specific Conditioning of Navy Cadets. J. Strength Cond. Res. 2017, 31, 1362–1370. [Google Scholar] [CrossRef]
- Kilen, A.; Hjelvang, L.B.; Dall, N.; Kruse, N.L.; Nordsborg, N.B. Adaptations to Short, Frequent Sessions of Endurance and Strength Training Are Similar to Longer, Less Frequent Exercise Sessions When the Total Volume Is the Same. J. Strength Cond. Res. 2015, 29, S46–S51. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Szivak, T.K. Strength Training for the Warfighter. J. Strength Cond. Res. 2012, 26, S107–S118. [Google Scholar] [CrossRef]
- Bomba, T.; Buzzichelli, C. Periodization; Theory and Methodology of Training, 6th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Friedl, K.E.; Knapik, J.J.; Häkkinen, K.; Baumgartner, N.; Groeller, H.; Taylor, N.A.; Duarte, A.F.; Kyröläinen, H.; Jones, B.H.; Kraemer, W.J.; et al. Perspectives on Aerobic and Strength Influences on Military Physical Readiness. J. Strength Cond. Res. 2015, 29, S10–S23. [Google Scholar] [CrossRef]
- Mala, J.; Szivak, T.K.; Flanagan, S.D.; Comstock, B.A.; Laferrier, J.Z.; Maresh, C.M.; Kraemer, W.J. The role of strength and power during performance of high intensity military tasks under heavy load carriage. U.S. Army Med. Dep. J. 2015, 3–11. Available online: https://pubmed.ncbi.nlm.nih.gov/26101902/ (accessed on 20 September 2020).
- Pihlainen, K.; Santtila, M.; Häkkinen, K.; Kyröläinen, H. Associations of Physical Fitness and Body Composition Characteristics with Simulated Military Task Performance. J. Strength Cond. Res. 2018, 32, 1089–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häkkinen, K.; Kallinen, M.; Izquierdo, M.; Jokelainen, K.; Lassila, H.; Mälkiä, E.; Kraemer, W.J.; Newton, R.U.; Alen, M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J. Appl. Physiol. 1998, 84, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Graefe’s Arch. Clin. Exp. Ophthalmol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Herbert, P.; Sculthorpe, N.; Baker, J.S.; Grace, F.; Sculthorpe, N.F. Validation of a Six Second Cycle Test for the Determination of Peak Power Output. Res. Sports Med. 2015, 23, 115–125. [Google Scholar] [CrossRef]
- Ojanen, T.; Kyröläinen, H.; Kozharskaya, E.; Häkkinen, K. Changes in strength and power performance and serum hormone concentrations during 12 weeks of task-specific or strength training in conscripts. Physiol. Rep. 2020, 8, e14422. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Conkright, W.R.; Barringer, N.D.; Lescure, P.B.; Feeney, K.A.; Smith, M.A.; Nindl, B.C. Differential recovery rates of fitness following U.S. Army Ranger training. J. Sci. Med. Sport 2020, 23, 529–534. [Google Scholar] [CrossRef]
- Hickson, R.C.; Rosenkoetter, M.A.; Brown, M.M. Strength training effects on aerobic power and short-term endurance. Med. Sci. Sports Exerc. 1980, 12, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.; Loenneke, J.P.; Anderson, J.C. Concurrent Training. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. Concurrent exercise training: Do opposites distract? J. Physiol. 2016, 595, 2883–2896. [Google Scholar] [CrossRef] [Green Version]
- Harman, E.A.; Gutekunst, D.J.; Frykman, P.N.; Nindl, B.C.; Alemany, J.A.; Mello, R.P.; Sharp, M.A. Effects of two different eight-week training programs on military physical performance. J. Strength Cond. Res. 2008, 22, 524–534. [Google Scholar] [CrossRef]
- Vaara, J.P.; Kokko, J.; Isoranta, M.; Kyröläinen, H. Effects of Added Resistance Training on Physical Fitness, Body Composition, and Serum Hormone Concentrations during Eight Weeks of Special Military Training Period. J. Strength Cond. Res. 2015, 29, S168–S172. [Google Scholar] [CrossRef]
- Santtila, M.; Häkkinen, K.; Nindl, B.C.; Kyröläinen, H. Cardiovascular and Neuromuscular Performance Responses Induced by 8 Weeks of Basic Training Followed by 8 Weeks of Specialized Military Training. J. Strength Cond. Res. 2012, 26, 745–751. [Google Scholar] [CrossRef]
- Gamble, P. Implications and Applications of Training Specificity for Coaches and Athletes. Strength Cond. J. 2006, 28, 54–58. [Google Scholar] [CrossRef]
- Gibala, M. Molecular responses to high-intensity interval exercise. Appl. Physiol. Nutr. Metab. 2009, 34, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; A Harman, E.; A Steelman, R.; Graham, B.S. A Systematic Review of the Effects of Physical Training on Load Carriage Performance. J. Strength Cond. Res. 2012, 26, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Harman, E.A.; Gutekunst, D.J.; Frykman, P.N.; Sharp, M.A.; Nindl, B.C.; Alemany, J.A.; Mello, R.P. Prediction of simulated battlefield physical performance from field-expedient tests. Mil. Med. 2008, 173, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Treloar, A.K.L.; Billing, D.C. Effect of Load Carriage on Performance of an Explosive, Anaerobic Military Task. Mil. Med. 2011, 176, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
Variable | TSG (n = 17) | STG (n = 15) | CON (n = 10) |
---|---|---|---|
Age (years.) | 20 (±1) | 20 (±1) | 20 (±1) |
Height (cm) | 180 (±7) | 183 (±6) | 177 (±4) |
Body mass (kg) | 73.2 (±9.8) | 73.8 (±7.8) | 71.1 (±11.0) |
BMI (kg·m−2) | 22.7 (±2.2) | 22.1 (±1.7) | 22.7 (±3.7) |
PRE | MID | POST | |Effect Size| | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | 1 vs. 2 | 2 vs. 3 | 1 vs. 3 | |
CMJ (cm) | TSG | 29 ± 6 | 26; 32 | 29 ± 5 | 26; 31 | 31 ± 4 *,# | 28; 33 | 0.00 | 0.43 | 0.38 |
STG | 33 ± 6 | 29; 36 | 33 ± 5 | 30; 36 | 35 ± 4 | 32; 37 | 0.00 | 0.43 | 0.38 | |
CON | 32 ± 6 | 28; 36 | 31 ± 7 | 26; 35 | 31 ± 6 | 27; 35 | 0.15 | 0.00 | 0.16 | |
POWER (w) | TSG | 1036 ± 140 | 961; 1110 | 1078 ± 138 * | 1004; 1151 | 1094 ± 125 ** | 1027; 1160 | 0.30 | 0.12 | 0.43 |
STG | 1097 ± 98 | 1043; 1152 | 1140 ± 92 * | 1090; 1192 | 1141 ± 103 * | 1084; 1198 | 0.44 | 0.01 | 0.43 | |
CON | 974 ± 122 | 886; 1061 | 1007 ± 144 | 904; 1110 | 1027 ± 147 * | 922; 1132 | 0.24 | 0.13 | 0.38 | |
UPPER BODY STRENGTH (kg) | TSG | 78 ± 14 | 71; 86 | 77 ± 13 | 70; 84 | 80 ± 12 ## | 74; 87 | 0.07 | 0.23 | 0.15 |
STG | 79 ± 14 | 72; 87 | 83 ± 14 * | 75; 90 | 84 ± 14 ** | 77; 92 | 0.28 | 0.06 | 0.35 | |
CON | 75 ± 14 | 65; 85 | 75 ± 15 | 65; 86 | 77 ± 16 | 65; 88 | 0.00 | 0.17 | 0.18 | |
LOWER BODY STRENGTH (kg) | TSG | 236 ± 40 | 214; 257 | 252 ± 39 * | 231; 273 | 255 ± 50 ** | 239; 284 | 0.40 | 0.07 | 0.41 |
STG | 229 ± 49 | 202; 256 | 242 ± 39 | 221; 264 | 244 ± 39 | 223; 266 | 0.29 | 0.05 | 0.33 | |
CON | 224 ± 50 | 189; 260 | 234 ± 57 | 193; 275 | 236 ± 56 | 195; 276 | 0.18 | 0.03 | 0.22 |
First Trial | PRE | MID | POST | |Effect Size| | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Performance Measure | Group | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | 1 vs. 2 | 2 vs. 3 | 1 vs. 3 |
5 m run (s) | TSG | 2.5 ± 0.3 | 2.4; 2.7 | 2.5 ± 0.4 | 2.3; 2.7 | 2.4 ± 0.3 | 2.3; 2.6 | 0.23 | 0.13 | 0.41 |
STG | 2.5 ± 0.2 | 2.4; 2.6 | 2.4 ± 0.2 | 2.3; 2.5 | 2.4 ± 0.2 | 2.3; 2.5 | 0.32 | 0.10 | 0.39 | |
CON | 2.6 ± 0.4 | 2.3; 2.9 | 2.5 ± 0.3 | 2.3; 2.8 | 2.5 ± 0.3 | 2.3; 2.7 | 0.22 | 0.03 | 0.26 | |
Crawl (s) | TSG | 8.0 ± 2.0 | 7.0; 9.1 | 6.7 ± 1.8 *** | 5.8; 7.7 | 6.4 ± 1.3 *** | 5.7; 7.1 | 0.69 | 0.22 | 0.96 |
STG | 7.5 ± 1.4 | 6.8; 8.3 | 6.5 ± 1.2 ** | 5.8; 7.2 | 6.4 ± 1.7 ** | 5.4; 7.4 | 0.81 | 0.05 | 0.74 | |
CON | 7.3 ± 1.0 | 6.5; 8.0 | 6.6 ± 1.8 | 5.4; 7.9 | 6.6 ± 1.8 | 5.3; 7.8 | 0.47 | 0.05 | 0.53 | |
KB carry (s) | TSG | 12.0 ± 1.9 | 11.0; 12.9 | 11.0 ± 1.7 *** | 10.1; 11.8 | 11.1 ± 1.8 * | 10.2; 12.0 | 0.58 | 0.08 | 0.50 |
STG | 11.5 ± 1.2 | 10.8; 12.1 | 10.8 ± 1.1 * | 10.2; 11.4 | 10.9 ± 1.4 | 10.1; 11.7 | 0.61 | 0.07 | 0.47 | |
CON | 11.5 ± 1.3 | 10.6; 12.4 | 11.2 ± 1.4 | 10.2; 12.2 | 11.2 ± 1.3 | 10.2; 12.1 | 0.22 | 0.04 | 0.26 | |
Drag (s) | TSG | 11.7 ± 3.7 | 9.8; 13.6 | 9.8 ± 2.4 *** | 8.6; 11.1 | 9.7 ± 2.3 *** | 8.5; 10.9 | 0.61 | 0.04 | 0.65 |
STG | 10.6 ± 2.4 | 9.3; 12.0 | 9.2 ± 1.6 ** | 8.4; 10.1 | 9.6 ± 1.9 * | 8.5; 10.7 | 0.72 | 0.11 | 0.49 | |
CON | 10.7 ± 2.0 | 9.3; 12.1 | 10.6 ± 3.2 | 8.3; 12.9 | 10.5 ± 2.9 | 8.4; 12.5 | 0.04 | 0.05 | 0.11 | |
10 m run (s) | TSG | 3.1 ± 0.4 | 2.9; 3.4 | 3.0 ± 0.4 * | 2.8; 3.1 | 2.9 ± 0.3 * | 2.8; 3.1 | 0.54 | 0.03 | 0.64 |
STG | 3.1 ± 0.4 | 2.9; 3.4 | 2.9 ± 0.3 *** | 2.7; 3.0 | 2.9 ± 0.3 * | 2.7; 3.0 | 0.74 | 0.18 | 0.72 | |
CON | 3.1 ± 0.5 | 2.7; 3.4 | 3.0 ± 0.5 | 2.6; 3.4 | 3.0 ± 0.6 | 2.6; 3.4 | 0.14 | 0.04 | 0.10 |
Second Trial | PRE | MID | POST | |Effect Size| | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Performance Measure | Group | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | 1 vs. 2 | 2 vs. 3 | 1 vs. 3 |
5 m run (s) | TSG | 2.6 ± 0.4 | 2.4; 2.8 | 2.5 ± 0.3 | 2.3; 2.6 | 2.5 ± 0.3 * | 2.3; 2.6 | 0.24 | 0.21 | 0.21 |
STG | 2.6 ± 0.2 | 2.4; 2.7 | 2.5 ± 0.2 | 2.4; 2.7 | 2.4 ± 0.2 | 2.3; 2.6 | 0.10 | 0.43 | 0.55 | |
CON | 2.8 ± 0.2 | 2.7; 3.0 | 2.6 ± 0.5 | 2.3; 3.0 | 2.6 ± 0.4 * | 2.4; 2.9 | 0.60 | 0.05 | 0.68 | |
Crawl (s) | TSG | 9.7 ± 2.9 | 8.2; 11.2 | 7.7 ± 2.0 *** | 6.7; 8.7 | 7.1 ± 1.5 ***,## | 6.3; 7.9 | 0.81 | 0.37 | 1.12 |
STG | 8.9 ± 1.9 | 7.8; 9.9 | 7.7 ± 1.5 * | 6.9; 8.6 | 7.5 ± 1.9 *** | 6.4; 8.5 | 0.69 | 0.16 | 0.77 | |
CON | 8.4 ± 1.7 | 7.2; 9.7 | 7.8 ± 2.2 | 6.2; 9.4 | 7.1 ± 1.8 **,# | 5.9; 8.4 | 0.33 | 0.35 | 0.78 | |
KB carry (s) | TSG | 14.1 ± 3.4 | 12,4; 15.8 | 12.3 ± 1.9 ** | 11.4; 13.3 | 11.9 ± 1.8 ***,# | 11.0; 12.8 | 0.68 | 0.23 | 0.85 |
STG | 13.0 ± 1.5 | 12.2; 13.8 | 11.9 ± 1.1 *** | 11.2; 12.5 | 11.6 ± 1.2 *** | 10.9; 12.3 | 0.90 | 0.22 | 1.06 | |
CON | 13.0 ± 2.0 | 11.6; 14.4 | 12.7 ± 2.1 | 11.2; 14.2 | 11.7 ± 1.6 **,### | 10.6; 12.8 | 0.33 | 0.58 | 0.79 | |
Drag (s) | TSG | 14.2 ± 5.2 | 11.5; 16.9 | 11.5 ± 3.0 *** | 9.9; 13.0 | 11.2 ± 2.8 *** | 9.7; 12.6 | 0.66 | 0.10 | 0.74 |
STG | 13.6 ± 4.2 | 11.3; 15.9 | 10.9 ± 1.9 ** | 9.9; 12.0 | 10.8 ± 2.6 *** | 9.3; 12.3 | 0.85 | 0.06 | 0.83 | |
CON | 13.4 ± 2.9 | 11.3; 15.4 | 12.3 ± 3.8 | 9.7; 15.0 | 11.3 ± 3.5 | 8.8; 13.8 | 0.32 | 0.30 | 0.67 | |
10 m run (s) | TSG | 3.5 ± 0.6 | 3.2; 3.8 | 3.2 ± 0.4 * | 3.0; 3.4 | 3.3 ± 0.4 * | 3.1; 3.4 | 0.59 | 0.06 | 0.54 |
STG | 3.6 ± 0.4 | 3.3; 3.8 | 3.1 ± 0.3 *** | 2.9; 3.3 | 3.1 ± 0.3 *** | 3.0; 3.3 | 1.12 | 0.25 | 1.28 | |
CON | 3.5 ± 4.0 | 3.2; 3.8 | 3.4 ± 0.7 | 2.8; 3.9 | 3.2 ± 0.5* | 2.8; 3.5 | 0.30 | 0.26 | 0.78 |
Third Trial | PRE | MID | POST | |Effect Size| | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Performance Measure | Group | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | Mean (±SD) | 95% CI | 1 vs. 2 | 2 vs. 3 | 1 vs. 3 |
5 m run (s) | TSG | 2.9 ± 0.6 | 2.6; 3.2 | 2.6 ± 0.3 *** | 2.4; 2.8 | 2.6 ± 0.3 *** | 2.4; 2.7 | 0.70 | 0.16 | 0.81 |
STG | 2.8 ± 0.3 | 2.6; 2.9 | 2.6 ± 0.2 ** | 2.5; 2.7 | 2.6 ± 0.3 * | 2.4; 2.7 | 0.81 | 0.04 | 0.78 | |
CON | 2.8 ± 0.5 | 2.5; 3.2 | 2.9 ± 0.7 | 2.5; 3.4 | 2.7 ± 0.5 ## | 2.4; 3.0 | 0.22 | 0.43 | 0.25 | |
Crawl (s) | TSG | 11.2 ± 3.6 | 9.4; 13.1 | 8.9 ± 2.3 *** | 7.7; 10.1 | 7.9 ± 1.8 ***,## | 7.0; 8.9 | 0.80 | 0.47 | 1.19 |
STG | 10.6 ± 2.6 | 9.2; 12.1 | 8.5 ± 2.0 *** | 7.4; 9.6 | 8.0 ± 1.6 *** | 7.1; 8.8 | 0.93 | 0.30 | 1.26 | |
CON | 9.0 ± 1.5 | 7.9; 10.1 | 9.2 ± 3.3 | 6.9; 11.6 | 7.4 ± 1.9 *,# | 6.0; 8.8 | 0.08 | 0.71 | 0.99 | |
KB carry (s) | TSG | 15.4 ± 3.8 | 13.4; 17.3 | 13.4 ± 2.2 *** | 12.2; 14.5 | 12.9 ± 2.7 *** | 11.5; 14.3 | 0.67 | 0.20 | 0.79 |
STG | 14.0 ± 1.9 | 13.0; 15:0 | 12.6 ± 1.5 ** | 11.8; 13.4 | 11.9 ± 1.4 ***,## | 11.1; 12.7 | 0.86 | 0.46 | 1.28 | |
CON | 13.6 ± 1.7 | 12.4; 14.8 | 13.5 ± 2.4 | 11.8; 15.2 | 11.8 ± 1.9 **,### | 10.4; 13.1 | 0.08 | 0.84 | 1.09 | |
Drag (s) | TSG | 15.9 ± 5.8 | 12.9; 18.9 | 13.0 ± 3.1 ** | 11.4; 14.6 | 11.9 ± 2.6 ***,# | 10.6; 13.2 | 0.64 | 0.40 | 0.92 |
STG | 15.6 ± 5.6 | 12.5; 18.7 | 12.1 ± 3.4 *** | 10.2; 14.0 | 11.9 ± 4.1 *** | 9.6; 14.2 | 0.77 | 0.07 | 0.78 | |
CON | 13.8 ± 2.9 | 11.7; 15.9 | 13.2 ± 3.8 | 10.4; 15.9 | 12.4 ± 3.3 | 10.0; 14.8 | 0.20 | 0.22 | 0.47 | |
10 m run (s) | TSG | 3.8 ± 0.6 | 3.5; 4.1 | 3.4 ± 0.3 ** | 3.2; 3.6 | 3.4 ± 0.4 * | 3.2; 3.6 | 0.84 | 0.06 | 0.72 |
STG | 3.5 ± 0.3 | 3.3; 3.7 | 3.3 ± 0.5 | 3.0; 3.6 | 3.2 ± 0.4 * | 3.0; 3.4 | 0.40 | 0.25 | 0.83 | |
CON | 3.6 ± 0.5 | 3.2; 4.0 | 3.7 ± 0.7 | 3.1; 4.2 | 3.5 ± 0.8 | 2.9; 4.0 | 0.12 | 0.26 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojanen, T.; Häkkinen, K.; Hanhikoski, J.; Kyröläinen, H. Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers. Int. J. Environ. Res. Public Health 2020, 17, 8000. https://doi.org/10.3390/ijerph17218000
Ojanen T, Häkkinen K, Hanhikoski J, Kyröläinen H. Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers. International Journal of Environmental Research and Public Health. 2020; 17(21):8000. https://doi.org/10.3390/ijerph17218000
Chicago/Turabian StyleOjanen, Tommi, Keijo Häkkinen, Jaakko Hanhikoski, and Heikki Kyröläinen. 2020. "Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers" International Journal of Environmental Research and Public Health 17, no. 21: 8000. https://doi.org/10.3390/ijerph17218000
APA StyleOjanen, T., Häkkinen, K., Hanhikoski, J., & Kyröläinen, H. (2020). Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers. International Journal of Environmental Research and Public Health, 17(21), 8000. https://doi.org/10.3390/ijerph17218000