Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders
Abstract
:1. Introduction
2. Methodology
- Demographic information, including city of residency, age, sex, formal education years, weight and height. Residents in Metropolitan Mexico City (MMC) and residents across 100 urban areas in the country (non-MMC) were included.
- The Spanish version of the Impact of Event Scale–Revised (IES-R) was applied. For evaluation, the scores were divided into four categories: 0–23, no psychological impact or normal score; 24–32, mild psychological impact; 33–36, moderate psychological impact; ≥37, severe psychological impact. A score of 33 or higher was selected as the most appropriate cut-off value for significant symptoms of probable PTSD in keeping with the literature [36,37,38,39,40,41]. The IES-R has well established validity and reliability [41] and in this work, the Cronbach’s alpha was 0.832.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
References
- Jung, C.R.; Lin, Y.T.; Hwang, B. Ozone, Particulate Matter, and Newly Diagnosed Alzheimer’s Disease: A Population-Based Cohort Study in Taiwan. J. Alzheimer’s Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet 2017, 389, 718–726. [Google Scholar] [CrossRef]
- Lee, P.C.; Liu, L.L.; Sun, Y.; Chen, Y.A.; Liu, C.C.; Li, C.Y.; Yu, H.L.; Ritz, B. Traffic-related air pollution increased the risk of Parkinson’s disease in Taiwan: A nationwide study. Environ. Int. 2016, 96, 75–81. [Google Scholar] [CrossRef]
- Hu, C.Y.; Fang, Y.; Li, F.L.; Dong, B.; Hua, X.G.; Jiang, W.; Zhang, H.; Lyu, Y.; Zhang, X.J. Association between ambient air pollution and Parkinson’s disease: Systematic review and meta-analysis. Environ. Res. 2019, 168, 448–459. [Google Scholar] [CrossRef]
- Mortamais, M.; Gutierrez, L.A.; de Hoogh, K.; Chen, J.; Vienneau, D.; Carrière, I.; Letellier, N.; Helmer, C.; Gabelle, A.; Mura, T.; et al. Long-term exposure to ambient air pollution and risk of dementia: Results of the prospective Three-City Study. Environ. Int. 2021, 148, 106376. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Hammond, J.; Kulesza, R.; Lachmann, I. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles. The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract likely a key brainstem portal. Environ. Res. 2020, 191, 110139. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Delgado-Chávez, R.; Mukherjee, P.S.; Kulesza, R.J.; Torres-Jardon, R.; Avila-Ramirez, J.; Villarreal-Rios, R. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤40 years of age. Environ. Res. 2018, 164, 475–487. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Kulesza, R.J.; Mukherjee, P.S.; Torres-Jardón, R.; Ronkko, T.; Doty, R.L. Alzheimer’s disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ. Res. 2018, 166, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Robles, R.R.; González-Maciel, A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson’s diseases. Environ. Res. 2019, 176, 108574. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Torres-Jardón, R.; Kulesza, R.J.; Mansour, Y.; González-González, L.O.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Mukherjee, P.S. Alzheimer disease starts in childhood in polluted Metropolitan Mexico City. A major health crisis in progress. Environ. Res. 2020, 183, 109137. [Google Scholar] [CrossRef]
- Ceballos, D.; Zhou, M.; Herrick, R. Metals and Particulates Exposure from a Mobile E-Waste Shredding Truck: A Pilot Study. Ann. Work Expo. Health 2020, 64, 890–896. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Avila-Ramírez, J.; Calderón-Garcidueñas, A.; Gonzalez-Heredia, T.; Acuna-Ayala, H.; Chao, C.; Thompson, C.; Ruiz-Ramos, R.; Cortes-Gonzalez, V.; Martinez-Martinez, L.; et al. Cerebrospinal Fluid Biomarkers in Highly Ex-posed PM2.5 Urbanites: The Risk of Alzheimer’s and Parkinson’s Diseases in Young Mexico City Residents. J. Alzheimer’s. Dis. 2016, 54, 597–613. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Mukherjee, P.S.; Kulesza, R.J.; Torres-Jardón, R.; Hernández-Luna, J.; Ávila-Cervantes, R.; Macias-Escobedo, E.; Gonzalez-Gonzalez, O.; Gonzalez-Maciel, A.; Research Universidad del Valle de México UVM Group; et al. Mild Cognitive Impairment and Dementia Involving Multiple Cognitive Do-mains in Mexican Urbanites. J. Alzheimer’s Dis. 2019, 68, 1113–1123. [Google Scholar]
- Molina, L.T.; Velasco, E.; Retama, A.; Zavala, M. Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore. Atmosphere 2019, 10, 512. [Google Scholar] [CrossRef] [Green Version]
- Zavala, M.; Molina, L.T.; Yacovitch, T.I.; Fortner, E.C.; Roscioli, J.R.; Floerchinger, C.; Herndon, S.C.; Kolb, C.E.; Knighton, W.B.; Paramo, V.H.; et al. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City. Atmos. Chem. Phys. Discuss. 2017, 17, 15293–15305. [Google Scholar] [CrossRef] [Green Version]
- Villalobos-Pietrini, R.; Amador-Muñoz, O.; Valle-Hernández, B.; Gomez-Arroyo, S.; Waliszewski, S. Organic Compound in Air-borne Particles and their Genotoxic Effects in Mexico City. Air Quality Monitoring Assessment and Management. 2011. Available online: https://www.intechopen.com/books/air-quality-monitoring-assessment-and-management/organic-compound-in-airborne-particles-and-their-genottoxic-effects-in-mexico-city (accessed on 10 May 2021).
- Caudillo, L.; Salcedo, D.; Peralta, O.; Castro, T.; Ospina, H.A. Nanoparticle size distributions in Mexico city. Atmos. Pollut. Res. 2020, 11, 78–84. [Google Scholar] [CrossRef]
- Mugica-Alvarez, V.; Figueroa-Lara, J.; Romero-Romo, M.; Sepúlveda-Sánchez, J.; López-Moreno, T. Concentrations and properties of airborne particles in the Mexico City subway system. Atmos. Environ. 2012, 49, 284–293. [Google Scholar] [CrossRef]
- Robles-García, R.; Fresán, A.; Yoldi, M. Posttraumatic stress disorder in urban women. Curr. Opin. Psychiatry 2020, 33, 245–249. [Google Scholar] [CrossRef]
- Cortés-Álvarez, N.Y.; Piñeiro-Lamas, R.; Vuelvas-Olmos, C.R. Psychological Effects and Associated Factors of COVID-19 in a Mexican Sample. In Disaster Medical Public Health Preparedness; 2020; pp. 1–12. Available online: https://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/psychological-effects-and-associated-factors-of-covid19-in-a-mexican-sample/7F6A1DB36F91BA6957BF1D0743F683B4 (accessed on 7 May 2021).
- Dai, W.; Chen, L.; Lai, Z.; Li, Y.; Wang, J.; Liu, A. The incidence of post-traumatic stress disorder among survivors after earthquakes:a systematic review and meta-analysis. BMC Psychiatry 2016, 16, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenier, S.; Payette, M.C.; Gunther, B.; Askari, S.; Desjardins, F.F.; Raymond, B.; Berbiche, D. Association of age and gender with anxiety disorders in older adults: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2019, 34, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Cho, N.; Zhang, J. Sex Differences in Insomnia: From Epidemiology and Etiology to Intervention. Curr. Psychiatry Rep. 2018, 20, 69. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Li, Y.; Du, L.; Li, Z.; Lei, F.; Wing, Y.K.; Kushida, C.A.; Zhou, D.; Tang, X. Gender differences in REM sleep behavior disorder: A clinical and polysomnographic study in China. Sleep Med. 2015, 16, 414–418. [Google Scholar] [CrossRef]
- Mendoza-Mojica, S.A.; Márquez-Mendoza, O.; Veytia-López, M.; Ramos-Lira, L.E.; Orozco-Zavala, R. Eventos potencialmente traumáticos y sintomatología postraumática en estudiantes de preparatoria [Potentially traumatic events and post-traumatic symptomatology in high school students]. Salud Publica Mex. 2017, 59, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Sieurin, J.; Wirdefeldt, K.; Pedersen, N.L.; Almqvist, C.; Larsson, H.; Valdimarsdóttir, U.A.; Fang, F. Association of Stress-Related Disorders with Subsequent Neurodegenerative Diseases. JAMA Neurol. 2021, 77, 700–709. [Google Scholar] [CrossRef]
- Desmarais, P.; Weidman, D.; Wassef, A.; Bruneau, M.A.; Friedland, J.; Bajsarowicz, P.; Thibodeau, M.P.; Herrmann, N.; Nguyen, Q.D. The Interplay between Post-traumatic Stress Disorder and Dementia: A Systematic Review. Am. J. Geriatr. Psychiatry 2020, 28, 48–60. [Google Scholar] [CrossRef]
- Neylan, T.C. Post-traumatic Stress Disorder and Neurodegeneration. Am. J. Geriatr. Psychiatry 2020, 28, 61–63. [Google Scholar] [CrossRef]
- Günak, M.M.; Billings, J.; Carratu, E.; Marchant, N.L.; Favarato, G.; Orgeta, V. Post-traumatic stress disorder as a risk factor for dementia: Systematic review and meta-analysis. Br. J. Psychiatry 2020, 217, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Nilaweera, D.; Freak-Poli, R.; Ritchie, K.; Chaudieu, I.; Ancelin, M.L.; Ryan, J. The long-term consequences of trauma and posttraumatic stress disorder symptoms on later life cognitive function and dementia risk. Psychiatry Res. 2020, 294, 113506. [Google Scholar] [CrossRef]
- Saadi, A.; Cruz-Gonzalez, M.; Hwang, A.; Cohen, L.; Alegria, M. Associations between Trauma, Sleep, and Cognitive Impairment Among Latino and Asian Older Adults. J. Am. Geriatr. Soc. 2021, 69, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Olivé, I.; Makris, N.; Densmore, M.; McKinnon, M.C.; Lanius, R.A. Altered basal forebrain BOLD signal variability at rest in posttraumatic stress disorder: A potential candidate vulnerability mechanism for neurodegeneration in PTSD. Hum. Brain Mapp. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Galbiati, A.; Verga, L.; Giora, E.; Zucconi, M.; Ferini-Strambi, L. The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Med. Rev. 2019, 43, 37–46. [Google Scholar] [CrossRef]
- Elliot, J.E.; Opel, R.A.; Pleshakov, D.; Rachakonda, T.; Chau, A.Q.; Weymann, K.B.; Lim, M.M. Posttraumatic stress disorder increases the odds of REM sleep behavior disorder and other parasomnias in Veterans with and without comorbid traumatic brain injury. Sleep 2020, 43, zsz237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horowitz, M.J.; Wilner, N.; Alvarez, W. Impact of Event Scale: A Measure of Subjective Stress. Psychosom. Med. 1979, 41, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, D.S.; Marmar, C.R. The Impact of Event Scale—Revised. In Assessing Psychological Trauma and PTSD; Wilson, J., Keane, T.M., Eds.; Guilford: New York, NY, USA, 1996; pp. 399–411. [Google Scholar]
- Baguena, M.J.; Villarroya, E.; Beleña, A.; Amelia, D.; Roldán, C.; Reig, R. Psychometric properties of the Spanish version of the Impact of Event Scale-Revised (IES-R). Análisis Modif. Conducta 2001, 27, 581–604. [Google Scholar]
- Tiemensma, J.; DePaoli, S.; Winter, S.D.; Felt, J.M.; Rus, H.M.; Arroyo, A.C. The performance of the IES-R for Latinos and non-Latinos: Assessing measurement invariance. PLoS ONE 2018, 13, e0195229. [Google Scholar] [CrossRef] [Green Version]
- Creamer, M.; Bell, R.; Failla, S. Psychometric properties of the Impact of Event Scale—Revised. Behav. Res. Ther. 2003, 41, 1489–1496. [Google Scholar] [CrossRef]
- Hyland, P.; Shevlin, M.; Fyvie, C.; Karatzias, T.J. Posttraumatic Stress Disorder and Complex Posttraumatic Stress Disorder inDSM-5andICD-11: Clinical and Behavioral Correlates. J. Trauma. Stress 2018, 31, 174–180. [Google Scholar] [CrossRef]
- Weiss, D.S. The impact of event scale: Revised. In Cross Cultural Assessment of Psychological Trauma and PTSD; Wilson, J.P., Tang, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–238. [Google Scholar]
- Postuma, R.B.; Arnulf, I.; Hogl, B.; Iranzo, A.; Miyamoto, T.; Dauvilliers, Y.; Oertel, W.H.; Ju, Y.-E.; Puligheddu, M.; Jennum, P.; et al. A single-question screen for rapid eye movement sleep behavior disorder: A multicenter validation study. Mov. Disord. 2012, 27, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Iranzo, A.; Hu, M.; Högl, B.; Boeve, B.F.; Manni, R.; Oertel, W.H.; Arnulf, I.; Ferini-Strambi, L.; Puligheddu, M.; et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019, 142, 744–759. [Google Scholar] [CrossRef]
- Yao, C.; Fereshtehnejad, S.M.; Keezer, M.R.; Wolfson, C.; Pelletier, A.; Postuma, R.B. Risk factors for possible REM sleep behavior disorder: A CLSA population-based cohort study. Neurology 2018, 92, e475–e485. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Kulesza, R.J.; Mansour, Y.; Aiello-Mora, M.; Mukherjee, P.S.; González-González, L.O. Increased Gain in the Auditory Pathway, Alzheimer’s Disease Continuum, and Air Pollution: Peripheral and Central Auditory System Dys-function Evolves Across Pediatric and Adult Urbanites. J. Alzheimer’s Dis. 2019, 70, 1275–1286. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Torres-Solorio, A.K.; Kulesza, R.J.; Torres-Jardón, R.; González-González, L.O.; García-Arreola, B.; Chávez-Franco, D.A.; Luévano-Castro, S.C.; Hernández-Castillo, A.; Carlos-Hernández, E.; et al. Gait and balance disturbances are common in young urbanites and associated with cognitive impairment. Air pollution and the historical development of Alzheimer’s disease in the young. Environ. Res. 2020, 191, 110087. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Franco-Lira, M.; Henríquez-Roldán, C.; Osnaya, N.; González-Maciel, A.; Reynoso-Robles, R.; Villarreal-Calderon, R.; Herritt, L.; Brooks, D.; Keefe, S.; et al. Urban air pollution: Influences on olfactory function and pathology in exposed children and young adults. Exp. Toxicol. Pathol. 2010, 62, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J.; Lin, S.C.; Benarroch, E.E.; Schmeichel, A.; Ahlskog, J.; Caselli, R.; Jacobson, S.; Sabbagh, M.; et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep Med. 2013, 14, 754–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDade, E.M.; Boot, B.P.; Christianson, T.J.; Pankratz, V.S.; Boeve, B.F.; Ferman, T.J.; Bieniek, K.; Hollman, J.H.; Roberts, R.O.; Mielke, M.M.; et al. Subtle gait changes in patients with REM sleep behavior disorder. Mov. Disord. 2013, 28, 1847–1853. [Google Scholar] [CrossRef] [Green Version]
- Shin, C.; Lee, J.Y.; Kim, J.K.; Nam, H.; Yoon, E.J.; Shin, S.A.; Kim, H.-J.; Jeon, B. Cognitive decline in association with hyposmia in idiopathic rapid eye movement sleep behavior disorder: A prospective 2-year follow-up study. Eur. J. Neurol. 2019, 26, 1417–1420. [Google Scholar] [CrossRef]
- Roguski, A.; Rayment, D.; Whone, A.L.; Jones, M.W.; Rolinski, M. A Neurologist’s Guide to REM Sleep Behavior Disorder. Front. Neurol. 2020, 11, 610. [Google Scholar] [CrossRef] [PubMed]
- St Louis, E.K.; Boeve, B.F. REM Sleep Behavior Disorder: Diagnosis, Clinical Implications, and Future Directions. Mayo Clin. Proc. 2017, 92, 1723–1736. [Google Scholar] [CrossRef]
- Parrado-González, A.; León-Jariego, J.C. COVID-19: Factores asociados al malestar emocional y morbilidad psíquica en pobla-ción española [Covid-19: Factors associated with emotional distress and psychological morbidity in Spain]. Rev. Esp. Salud Publica 2020, 94, e202006058. [Google Scholar]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Mukherjee, P.S.; Robles, R.R.; Perez-Guille, B.; Gayosso-Chávez, C.; Torres-Jardón, R.; Cross, J.V.; Ahmed, I.A.M.; Karloukovski, V.V.; et al. Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts. Environ. Res. 2019, 176, 108567. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rill, E.; Saper, C.; Rye, D.B.; Kofler, M.; Nonnekes, J.; Lozano, A.; Valls-Solé, J.; Hallett, M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin. Neurophysiol. 2019, 130, 925–940. [Google Scholar] [CrossRef]
- Venkatraman, A.; Edlow, B.L.; Immordino-Yang, M.H. The Brainstem in Emotion: A Review. Front. Neuroanat. 2017, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef] [PubMed]
- Zelena, D.; Menant, O.; Andersson, F.; Chaillou, E. Periaqueductal gray and emotions: The complexity of the problem and the light at the end of the tunnel, the magnetic resonance imaging. Endocr. Regul. 2018, 52, 222–238. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.E.; Péron, J. The basal ganglia and the cerebellum in human emotion. Soc. Cogn. Affect. Neurosci. 2020, 15, 599–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Larcher, K.M.; Misic, B.; Dagher, A. Anatomical and functional organization of the human substantia nigra and its connections. eLife 2017, 6, e26653. [Google Scholar] [CrossRef]
- Miyamoto, T.; Miyamoto, M.; Numahata, K.; Onoue, H.; Akaiwa, Y.; Sairenchi, T. Reduced dopamine transporter binding predicts early transition to Lewy body disease in Japanese patients with idiopathic rapid eye movement sleep behavior disorder. J. Neurol. Sci. 2020, 414, 116821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Niu, L.; Liu, X.; Liu, Y.; Li, S.; Yu, H.; Wet, L. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: An Update. Aging Dis. 2020, 11, 315–326. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: (DSM-5®); American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Davidson, J.R.; Book, S.W.; Colket, J.T.; Tupler, L.A.; Roth, S.; David, D.; Hertzberg, M.; Mellman, T.; Beckham, J.C.; Smith, R.D.; et al. Assessment of a new self-rating scale for post-traumatic stress disorder. Psychol. Med. 1997, 27, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Felding, S.U.; Mikkelsen, L.B.; Bach, B. Complex PTSD and personality disorder in ICD-11: When to assign one or two diagnoses? Australas. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- LeardMann, C.A.; McMaster, H.S.; Warner, S.; Esquivel, A.P.; Porter, B.; Powell, T.M.; Tu, X.M.; Lee, W.W.; Rull, R.P.; Hoge, C.W.; et al. Comparison of Posttraumatic Stress Disorder Checklist Instruments From Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition vs Fifth Edition in a Large Cohort of US Military Service Members and Veterans. JAMA Netw. Open 2021, 4, e218072. [Google Scholar] [CrossRef] [PubMed]
- Gluck, R.L.; Hartzell, G.E.; Dixon, H.D.; Michopoulos, V.; Powers, A.; Stevens, J.S.; Fani, N.; Carter, S.; Schwartz, A.C.; Jovanovic, T.; et al. Trauma exposure and stress-related disorders in a large, urban, predominantly African-American, female sample. Arch. Women’s Ment. Health 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Folle, A.D.; Paul, K.; Bronstein, J.M.; Keener, A.M.; Ritz, B. Clinical progression in Parkinson’s disease with features of REM sleep behavior disorder: A population-based longitudinal study. Park. Relat. Disord. 2019, 62, 105–111. [Google Scholar] [CrossRef]
- Karanth, S.; Nelson, P.T.; Katsumata, Y.; Kryscio, R.J.; Schmitt, F.A.; Fardo, D.W.; Cykowski, M.D.; Jicha, G.A.; Van Eldik, L.J.; Abner, E.L. Prevalence and Clinical Phenotype of Quadruple Misfolded Proteins in Older Adults. JAMA Neurol. 2020, 77, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Ee, N.; Peters, J.; Booth, A.; Mudway, I.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019, 70, S145–S163. [Google Scholar] [CrossRef] [Green Version]
- Rafferty, L.A.; Cawkill, P.E.; Stevelink, S.A.M.; Greenberg, K.; Greenberg, N. Dementia, post-traumatic stress disorder and major depressive disorder: A review of the mental health risk factors for dementia in the military veteran population. Psychol. Med. 2018, 48, 1400–1409. [Google Scholar] [CrossRef]
- Delic, V.; Ratliff, W.A.; Citron, B.A. Sleep Deprivation, a Link between Post-Traumatic Stress Disorder and Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 79, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, K.; So, H.S.; Choi, J.H.; Yoon, I.Y.; Choi, H. REM Sleep Behavior Disorder among Veterans with and without Post-Traumatic Stress Disorder. Psychiatry Investig. 2020, 17, 987–995. [Google Scholar] [CrossRef]
- Miller, M.W.; Lin, A.P.; Wolf, E.; Miller, D.R. Oxidative Stress, Inflammation, and Neuroprogression in Chronic PTSD. Harv. Rev. Psychiatry 2018, 26, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 4306. [Google Scholar] [CrossRef] [PubMed]
Categories | All Subjects n = 4502 | MMC n = 1865 | Non-MMC Subjects n = 2637 |
---|---|---|---|
Age | 29.31 (10.31) | 30.88 (10.83) | 28.20 (9.77) |
Sex (M/F) | 1734/2768 | 731/1134 | 1003/1634 |
Years Education | 15.76 (2.69) | 15.91 (2.77) | 15.66 (2.63) |
BMI | 25.56 (5.10) | 25.51 (5.01) | 25.59 (5.17) |
IES-R total score | 33.30 (15.28) | 33.73 (15.46) | 32.99 (15.15) |
RBD1Q | Y/N = 1018/3484 (22.61%) | Y/N = 455/14,010 (24.40%) | Y/N = 563/2074 (21.35%) |
Categories IES-R | All Subjects n = 4502 | MMC n = 1865 | Non-MMC Subjects n = 2637 |
---|---|---|---|
Normal (0–23) | 1215 (26.99%) | 515 (27.61%) | 700 (26.54%) |
Mild (24–32) | 1016 (22.57%) | 393 (21.07%) | 623 (23.63%) |
Moderate (33–36) | 467 (10.37%) | 185 (9.92%) | 282 (10.69%) |
Severe (≥37) | 1804 (40.07%) | 772 (41.39%) | 1032 (39.14%) |
Subscale Score | All | MMC | Non-MMC |
---|---|---|---|
Intrusion | 11.2 ± 6.5 | 11.5 ± 6.6 | 11.0 ± 6.4 |
Avoidance | 12.0 ± 6.6 | 12.0 ± 6.5 | 12.1 ± 6.6 |
Hyper-arousal | 9.9 ± 5.6 | 10.1 ± 5.7 | 9.8 ± 5.5 |
Variables IES-R ≥33 | All = 2271/4502 | MMC = 957/1865 | Non-MMC = 1314/2637 |
---|---|---|---|
Age | 29.03 (9.78) | 30.66 (10.43) | 27.85 (9.11) |
Sex (M/F) | 741/1530 | 341/616 | 400/914 |
Years Education | 15.74 (2.61) | 15.82 (2.68) | 15.68 (2.55) |
BMI | 25.59 (5.08) | 25.56 (5.05) | 25.61 (5.11) |
IES-R total score | 45.46 (9.92) | 45.90 (10.01) | 45.13 (9.85) |
RBD1Q | Y/N = 676/1595 (29.8%) | Y/N = 313/644 (32.7%) | Y/N = 363/951 (27.6%) |
IES-R Total Score | Intrusion | Avoidance | Hyperarousal |
---|---|---|---|
≥37, RBD1Q YES | 18.1 (5.1) | 16.5 (5.7) | 16.5 (4.5) |
≥37, RBD1Q NO | 16.1 (4.7) | 16.9 (5.2) | 13.9 (4.3) |
p-value | <0.0001 | 0.1773 | <0.0001 |
Effect Size = (µ1 − µ2)/σ | Sample Size in Each Group (Power = 0.70) | Sample Size in Each Group (Power = 0.80) | Sample Size in Each Group (Power = 0.90) |
---|---|---|---|
0.05 | 4938 | 6280 | 8406 |
0.10 | 1235 | 1570 | 2102 |
0.15 | 549 | 698 | 934 |
0.20 | 309 | 393 | 526 |
0.25 | 198 | 252 | 337 |
0.30 | 138 | 175 | 234 |
p1 | p2 | Sample Size in Each Group (Power = 0.70) | Sample Size in Each Group (Power = 0.80) | Sample Size in Each Group (Power = 0.90) |
---|---|---|---|---|
0.10 | 0.15 | 540 | 686 | 918 |
0.10 | 0.20 | 157 | 199 | 266 |
0.10 | 0.25 | 79 | 100 | 133 |
0.20 | 0.25 | 861 | 1094 | 1464 |
0.20 | 0.30 | 231 | 294 | 392 |
0.20 | 0.35 | 109 | 138 | 185 |
0.30 | 0.35 | 1083 | 1377 | 1842 |
0.30 | 0.40 | 281 | 356 | 477 |
0.30 | 0.45 | 128 | 163 | 217 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Garcidueñas, L.; Rajkumar, R.P.; Stommel, E.W.; Kulesza, R.; Mansour, Y.; Rico-Villanueva, A.; Flores-Vázquez, J.O.; Brito-Aguilar, R.; Ramírez-Sánchez, S.; García-Alonso, G.; et al. Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders. Int. J. Environ. Res. Public Health 2021, 18, 6689. https://doi.org/10.3390/ijerph18136689
Calderón-Garcidueñas L, Rajkumar RP, Stommel EW, Kulesza R, Mansour Y, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, García-Alonso G, et al. Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders. International Journal of Environmental Research and Public Health. 2021; 18(13):6689. https://doi.org/10.3390/ijerph18136689
Chicago/Turabian StyleCalderón-Garcidueñas, Lilian, Ravi Philip Rajkumar, Elijah W. Stommel, Randy Kulesza, Yusra Mansour, Adriana Rico-Villanueva, Jorge Orlando Flores-Vázquez, Rafael Brito-Aguilar, Silvia Ramírez-Sánchez, Griselda García-Alonso, and et al. 2021. "Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders" International Journal of Environmental Research and Public Health 18, no. 13: 6689. https://doi.org/10.3390/ijerph18136689
APA StyleCalderón-Garcidueñas, L., Rajkumar, R. P., Stommel, E. W., Kulesza, R., Mansour, Y., Rico-Villanueva, A., Flores-Vázquez, J. O., Brito-Aguilar, R., Ramírez-Sánchez, S., García-Alonso, G., Chávez-Franco, D. A., Luévano-Castro, S. C., García-Rojas, E., Revueltas-Ficachi, P., Villarreal-Ríos, R., & Mukherjee, P. S. (2021). Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders. International Journal of Environmental Research and Public Health, 18(13), 6689. https://doi.org/10.3390/ijerph18136689