Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Drugs Associated or Not Associated with ADs
2.2. Development of Structural Alert Database
2.3. Search the Structural Alerts in Chemical Structures
2.4. Development of the Predictive Model Using Machine-Learning Approach
2.5. Quantum Chemistry Analysis
3. Results
3.1. Association between AD-Positive/Negative Drugs and Reactive Metabolites-Related Structural Alerts
3.2. Integration of Structural Alerts with Daily Dose
3.3. Predictive Modeling Based on Structural Alerts and Daily Dose
3.4. Quantum Chemistry Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, G.S.; Bynum, M.L.; Somers, E.C. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 2009, 33, 197–207. [Google Scholar] [CrossRef] [Green Version]
- AARDA. The Cost Burden of Autoimmune Disease: The Latest Front in the War on Healthcare Spending; AARDA: Eastpointe, MI, USA, 2011. [Google Scholar]
- Borchers, A.T.; Keen, C.L.; Gershwin, M.E. Drug-Induced Lupus. Ann. N. Y. Acad. Sci. 2007, 1108, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Castiella, A.; Zapata, E.; Lucena, M.I.; Andrade, R.J. Drug-induced autoimmune liver disease: A diagnostic dilemma of an increasingly reported disease. World J. Hepatol. 2014, 6, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; et al. Covid-19 and autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef]
- Galeotti, C.; Bayry, J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 2020, 16, 413–414. [Google Scholar] [CrossRef]
- Chang, C.; Gershwin, M.E. Drug-Induced Lupus Erythematosus. Drug Saf. 2011, 34, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, E.; Talwalkar, J.; Treeprasertsuk, S.; Kamath, P.S.; Takahashi, N.; Sanderson, S.; Neuhauser, M.; Lindor, K. Drug-induced autoimmune hepatitis: Clinical characteristics and prognosis. Hepatology 2010, 51, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J. Drug-Induced Autoimmune-Like Hepatitis. Dig. Dis. Sci. 2011, 56, 958–976. [Google Scholar] [CrossRef]
- Cho, T.; Uetrecht, J. How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chem. Res. Toxicol. 2017, 30, 295–314. [Google Scholar] [CrossRef]
- Mosedale, M.; Watkins, P.B. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J. Med. Chem. 2020, 63, 6436–6461. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Kaplowitz, N. Immune-mediated drug-induced liver disease. Clin. Liver Dis. 2002, 6, 755–774. [Google Scholar] [CrossRef]
- Claesson, A.; Minidis, A. Systematic Approach to Organizing Structural Alerts for Reactive Metabolite Formation from Potential Drugs. Chem. Res. Toxicol. 2018, 31, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Stepan, A.F.; Walker, D.P.; Bauman, J.; Price, D.A.; Baillie, T.A.; Kalgutkar, A.S.; Aleo, M.D. Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States. Chem. Res. Toxicol. 2011, 24, 1345–1410. [Google Scholar] [CrossRef] [PubMed]
- Limban, C.; Nuţă, D.C.; Chiriţă, C.; Negreș, S.; Arsene, A.L.; Goumenou, M.; Karakitsios, S.P.; Tsatsakis, A.; Sarigiannis, D.A. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol. Rep. 2018, 5, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.M.; Muratov, E.N.; Capuzzi, S.J.; Politi, R.; Low, Y.; Braga, R.; Zakharov, A.V.; Sedykh, A.; Mokshyna, E.; Farag, S.; et al. Alarms about structural alerts. Green Chem. 2016, 18, 4348–4360. [Google Scholar] [CrossRef] [Green Version]
- Walgren, J.L.; Mitchell, M.D.; Thompson, D.C. Role of Metabolism in Drug-Induced Idiosyncratic Hepatotoxicity. Crit. Rev. Toxicol. 2005, 35, 325–361. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. M7(R1) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals To Limit Potential Carcinogenic Risk; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018.
- European Medicines Agency. ICH M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk; European Medicines Agency: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Rim, K.-T. In silico prediction of toxicity and its applications for chemicals at work. Toxicol. Environ. Health Sci. 2020, 12, 191–202. [Google Scholar] [CrossRef]
- Corrigendum to Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. In Official Journal of the European Union; European Union: Luxembourg, 2006.
- Basile, A.O.; Yahi, A.; Tatonetti, N.P. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol. Sci. 2019, 40, 624–635. [Google Scholar] [CrossRef]
- RDKit: Open-Source Cheminformatics. Available online: https://www.rdkit.org/ (accessed on 27 June 2021).
- Chen, M.; Borlak, J.; Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 2013, 58, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. (2017) CatBoost: Unbiased boosting with categorical features. arXiv 2017, arXiv:1706.09516. [Google Scholar]
- Chen, M.; Hong, H.; Fang, H.; Kelly, R.; Zhou, G.; Borlak, J.; Tong, W. Quantitative Structure-Activity Relationship Models for Predicting Drug-Induced Liver Injury Based on FDA-Approved Drug Labeling Annotation and Using a Large Collection of Drugs. Toxicol. Sci. 2013, 136, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associ-ates, Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. [Google Scholar]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Chemin. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [Green Version]
- LoPachin, R.M.; Gavin, T.; Geohagen, B.C.; Das, S. Neurotoxic Mechanisms of Electrophilic Type-2 Alkenes: Soft Soft Interactions Described by Quantum Mechanical Parameters. Toxicol. Sci. 2007, 98, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Patterson, R.; Germolec, D. Review Article Toxic Oil Syndrome: Review of Immune Aspects of the Disease. J. Immunotoxicol. 2005, 2, 51–58. [Google Scholar] [CrossRef]
- Wulferink, M.; González, J.; Goebel, C.; Gleichmann, E. T Cells Ignore Aniline, a Prohapten, but Respond to Its Reactive Metabolites Generated by Phagocytes: Possible Implications for the Pathogenesis of Toxic Oil Syndrome. Chem. Res. Toxicol. 2001, 14, 389–397. [Google Scholar] [CrossRef]
- Seidenari, S.; Mantovani, L.; Manzini, B.M.; Pignatti, M. Cross-sensitizations between azo dyes and para-amino compound. Contact Dermat. 1997, 36, 91–96. [Google Scholar] [CrossRef]
- Estlander, T. Allergic dermatoses and respiratory diseases from reactive dyes. Contact Dermat. 1988, 18, 290–297. [Google Scholar] [CrossRef]
- Krasteva, M.; Nicolas, J.F.; Chabeau, G.; Garrigue, J.-L.; Bour, H.; Thivolet, J.; Schmitt, D. Dissociation of Allergenic and Immunogenic Functions in Contact Sensitivity to Para-Phenylenediamine. Int. Arch. Allergy Immunol. 1993, 102, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.; Gerberick, G.; Kimber, I.; Loveless, S. The local lymph node assay: A viable alternative to currently accepted skin sensitization tests. Food Chem. Toxicol. 1996, 34, 985–997. [Google Scholar] [CrossRef]
- He, Y.; Sawalha, A.H. Drug-induced lupus erythematosus: An update on drugs and mechanisms. Curr. Opin. Rheumatol. 2018, 30, 490–497. [Google Scholar] [CrossRef]
- Sabbioni, G. Hemoglobin Adducts and Urinary Metabolites of Arylamines and Nitroarenes. Chem. Res. Toxicol. 2017, 30, 1733–1766. [Google Scholar] [CrossRef] [PubMed]
- Dedeoglu, F. Drug-induced autoimmunity. Curr. Opin. Rheumatol. 2009, 21, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Uetrecht, J.P.; Sweetman, B.J.; Woosley, R.L.; Oates, J.A. Metabolism of procainamide to a hydrox-ylamine by rat and human hepatic microsomes. Drug Metab. Dispos. 1984, 12, 77–81. [Google Scholar]
- Budinsky, R.A.; Roberts, S.M.; Coats, E.A.; Adams, L.; Hess, E.V. The formation of procainamide hydroxylamine by rat and human liver microsomes. Drug Metab. Dispos. 1987, 15, 37–43. [Google Scholar]
- Uetrecht, J.P. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide. J. Pharmacol. Exp. Ther. 1985, 232, 420–425. [Google Scholar]
- Rubin, R.L.; Uetrecht, J.P.; Jones, J.E. Cytotoxicity of oxidative metabolites of procainamide. J. Pharmacol. Exp. Ther. 1987, 242, 833–841. [Google Scholar]
- Kretz-Rommel, A.; Duncan, S.R.; Rubin, R.L. Autoimmunity caused by disruption of central T cell tolerance. A murine model of drug-induced lupus. J. Clin. Investig. 1997, 99, 1888–1896. [Google Scholar] [CrossRef]
- Kretz-Rommel, A.; Rubin, R.L. Persistence of autoreactive T cell drive is required to elicit an-ti-chromatin antibodies in a murine model of drug-induced lupus. J. Immunol. 1999, 162, 813–820. [Google Scholar]
- Shenton, J.M.; Chen, J.; Uetrecht, J.P. Animal models of idiosyncratic drug reactions. Chem. Interact. 2004, 150, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Yung, R.; Powers, D.; Johnson, K.; Amento, E.; Carr, D.; Laing, T.; Yang, J.; Chang, S.; Hemati, N.; Richardson, B. Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J. Clin. Investig. 1996, 97, 2866–2871. [Google Scholar] [CrossRef]
- Hughes, T.B.; Miller, G.P.; Swamidass, S.J. Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with Glutathione. Chem. Res. Toxicol. 2015, 28, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Rada, B.; Zgórniak-Nowosielska, I. Site of action of N,N′-bis(methylisatin-beta-thiosemicarbazone)-2-methylpiperazine in the vaccinia virus replication cycle. Acta Virol. 1984, 28, 428–432. [Google Scholar]
- Gerasimou, C.; Vitali, G.P.; Vavougios, G.; Papageorgiou, C.; Douzenis, A.; Kokoris, S.; Liappas, I.; Rizos, E. Clozapine Associated with Autoimmune Reaction, Fever and Low Level Cardiotoxicity—A Case Report. In Vivo 2017, 31, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rami, A.F.; Barkan, D.; Mevorach, D.; Leitersdorf, E.; Caraco, Y. Clozapine-Induced Systemic Lupus Erythematosus. Ann. Pharmacother. 2006, 40, 983–985. [Google Scholar] [CrossRef]
- Liu, Z.C.; Uetrecht, J.P. Clozapine is oxidized by activated human neutrophils to a reactive nitrenium ion that irreversibly binds to the cells. J. Pharmacol. Exp. Ther. 1995, 275, 1476–1483. [Google Scholar]
- Uetrecht, J.; Zahid, N.; Tehim, A.; Fu, J.M.; Rakhit, S. Structural features associated with reactive metabolite formation in clozapine analogues. Chem. Interact. 1997, 104, 117–129. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Vaz, A.D.N.; Lame, M.E.; Henne, K.R.; Soglia, J.; Zhao, S.X.; Abramov, Y.A.; Lombardo, F.; Collin, C.; Hendsch, Z.S.; et al. Bioactivation of the Nontricyclic Antidepressant Nefazodone to a Reactive Quinone-Imine Species in Human Liver Microsomes and Recombinant Cytochrome P450 3A4. Drug Metab. Dispos. 2004, 33, 243–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulton, D.W.; Kollia, G.; Mallikaarjun, S.; Komoroski, B.; Sharma, A.; Kovalick, L.J.; Reeves, R.A. Pharmacokinetics and Tolerability of Intramuscular, Oral and Intravenous Aripiprazole in Healthy Subjects and in Patients with Schizophrenia. Clin. Pharmacokinet. 2008, 47, 475–485. [Google Scholar] [CrossRef]
- Gohara, M.; Yagami, A.; Suzuki, K.; Morita, Y.; Sano, A.; Iwata, Y.; Hashimoto, T.; Matsunaga, K. Allergic contact dermatitis caused by phenylethyl resorcinol [4-(1-phenylethyl)-1,3-benzenediol], a skin-lightening agent in cosmetics. Contact Dermat. 2013, 69, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Nieto, M.-A.; Sánchez-Pedreño, P.; Martínez-Menchón, T.; Melgar-Molero, V.; Alcántara-Nicolás, F.; De La Cruz-Murie, P. Allergic contact dermatitis caused by phenylethyl resorcinol, a skin-lightening agent contained in a sunscreen. Contact Dermat. 2016, 75, 250–253. [Google Scholar] [CrossRef]
- Njoku, D.; Laster, M.J.; Gong, D.H.; I Eger, E.; Reed, G.F.; Martin, J.L. Biotransformation of Halothane, Enflurane, Isoflurane, and Desflurane to Trifluoroacetylated Liver Proteins. Anesth. Analg. 1997, 84, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.E.; Halpert, J. Analogues of chloramphenicol as mechanism-based inactivators of rat liver cytochrome P-450: Modifications of the propanediol side chain, the p-nitro group, and the dichloromethyl moiety. Mol. Pharmacol. 1986, 29, 391–398. [Google Scholar] [PubMed]
- Lovrić, M.; Malev, O.; Klobučar, G.; Kern, R.; Liu, J.; Lučić, B. Predictive Capability of QSAR Models Based on the CompTox Zebrafish Embryo Assays: An Imbalanced Classification Problem. Molecules 2021, 26, 1617. [Google Scholar] [CrossRef]
- Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W. Mold2, Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics. J. Chem. Inf. Model. 2008, 48, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
Structural Alerts | Description | Number of Matched Drugs | Sensitivity | PPV | FPR | OR | p Value | |
---|---|---|---|---|---|---|---|---|
AD-Positive | AD-Negative | |||||||
benzene ring with nitrogen-containing substituent | 14 | 42 | 28% | 25% | 12% | 2.95 | p = 0.0036 | |
benzene ring with nitrogen-containing substituent (no N-H bond) | 7 | 22 | 14% | 24% | 6% | 2.51 | p = 0.0699 | |
alkenes | 12 | 51 | 24% | 19% | 14% | 1.92 | p = 0.0931 | |
methylbenzene with halogenation at the methyl group | 7 | 87 | 14% | 7% | 24% | 0.51 | p = 0.1104 | |
benzene ring with nitrogen-containing substituent (one N-H bond) | 8 | 36 | 16% | 18% | 10% | 1.72 | p = 0.2229 | |
methoxy and methyl group with three aromatic carbon bonds in between | 6 | 30 | 12% | 17% | 8% | 1.50 | p = 0.4228 | |
benzene ring with hydroxyl group | 6 | 60 | 12% | 9% | 17% | 0.68 | p = 0.5384 | |
halogenated carbon | 11 | 64 | 22% | 15% | 18% | 1.31 | p = 0.5584 | |
aromatic carbon bond with methyl and O/S groups | 6 | 38 | 12% | 14% | 11% | 1.16 | p = 0.8074 | |
benzene ring with methoxy group-containing substituent | 8 | 60 | 16% | 12% | 17% | 0.96 | p > 0.9999 | |
All structural alerts combined | 19 | 166 | 38% | 10% | 46% | 0.71 | p = 0.2903 | |
High daily dose (≥100 mg) | 36 | 141 | 72% | 20% | 39% | 3.94 | p < 0.0001 |
Structural Alerts | Description | Number of Matched Drugs | Sensitivity | PPV | FPR | OR | p Value | |
---|---|---|---|---|---|---|---|---|
AD-Positive | AD-Negative | |||||||
+ daily dose ≥ 100 mg | benzene ring with nitrogen-containing substituent | 10 | 14 | 20% | 42% | 4% | 6.13 | p = 0.0002 |
+ daily dose ≥ 100 mg | benzene ring with nitrogen-containing substituent (two N-H bond) | 3 | 1 | 6% | 75% | 0% | 22.72 | p = 0.0064 |
+ daily dose ≥ 100 mg | benzene ring with nitrogen-containing substituent (one N-H bond) | 3 | 9 | 6% | 25% | 3% | 2.47 | p = 0.1692 |
+ daily dose ≥ 100 mg | benzene ring with nitrogen-containing substituent (no N-H bond) | 5 | 4 | 10% | 56% | 1% | 9.81 | p = 0.0019 |
+ daily dose ≥ 100 mg | nitrogen-containing compound | 33 | 138 | 66% | 19% | 39% | 3.08 | p = 0.0004 |
+ daily dose ≥ 100 mg | benzene | 25 | 69 | 50% | 27% | 19% | 4.17 | p = 0.8720 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhu, J.; Fu, P.; Tong, W.; Hong, H.; Chen, M. Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose. Int. J. Environ. Res. Public Health 2021, 18, 7139. https://doi.org/10.3390/ijerph18137139
Wu Y, Zhu J, Fu P, Tong W, Hong H, Chen M. Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose. International Journal of Environmental Research and Public Health. 2021; 18(13):7139. https://doi.org/10.3390/ijerph18137139
Chicago/Turabian StyleWu, Yue, Jieqiang Zhu, Peter Fu, Weida Tong, Huixiao Hong, and Minjun Chen. 2021. "Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose" International Journal of Environmental Research and Public Health 18, no. 13: 7139. https://doi.org/10.3390/ijerph18137139
APA StyleWu, Y., Zhu, J., Fu, P., Tong, W., Hong, H., & Chen, M. (2021). Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose. International Journal of Environmental Research and Public Health, 18(13), 7139. https://doi.org/10.3390/ijerph18137139