Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Measurements
2.2.1. Sociodemographic Characteristics
2.2.2. Anthropometric Measurement
2.2.3. Biochemical Measurement
2.2.4. Classification of NKRs by Change in Weight after Defection from North Korea
2.3. Statistical Analysis
3. Results
3.1. Characteristics of The Study Population
3.2. Prevalence of Individual Metabolic Components in The Weight Gain and Non-Weight Gain Groups
3.3. Number of Metabolic Components in Weight Gain and Non-Weight Gain Groups
3.4. Body Composition in Weight Gain and Non-Weight Gain Groups
3.5. Risk Factors of Metabolic Syndrome among NKRs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.W.; Zhu, S.; Palaniappan, L.; Heshka, S.; Carnethon, M.R.; Heymsfield, S.B. The metabolic syndrome: Prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch. Intern. Med. 2003, 163, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systemic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.; Dagostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, L.; Carnethon, M.R.; Wang, Y.; Hanley, A.J.; Fortmann, S.P.; Haffner, S.M.; Wagenknecht, L. Insulin Resistance Atherosclerosis Study. Predictors of the incident metabolic syndrome in adults: The Insulin Resistance Atherosclerosis Study. Diabetes Care 2004, 27, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Toga, S.; Fukkoshi, Y.; Akamatsu, R. Relationship between weight gain and metabolic syndrome in non-obese Japanese adults. Diabetes Metab. Syndr. 2016, 10, 63–67. [Google Scholar] [CrossRef]
- Norman, J.E.; Bild, D.; Lewis, C.E.; Liu, K.; West, D.S. The impact of weight change on cardiovascular disease risk factors in young black and white adults: The CARDIA study. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Loria, C.M.; Hill, J.O.; Sidney, S.; Savage, P.J.; Liu, K. Coronary Artery Risk Development in Young Adults study. Risk factors for the metabolic syndrome: The Coronary Artery Risk Development in Young adults (CARDIA) study, 1985–2001. Diabetes Care 2004, 27, 2707–2715. [Google Scholar] [CrossRef] [Green Version]
- Montonen, J.; Boeing, H.; Schleicher, E.; Fritsche, A.; Pischon, T. Association of changes in body mass index during earlier adulthood and later adulthood with circulating obesity biomarker concentrations in middle-aged men and women. Diabetologia 2011, 54, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Hamaguchi, M.; Fukuda, T.; Obora, A.; Kojima, T.; Fukui, M. Weight gain since age of 20 as risk of metabolic syndrome even in non-overweight individuals. Endocrine 2017, 58, 253–261. [Google Scholar] [CrossRef]
- Suzuki, A.; Akamatsu, R. Long-term weight gain is related to risk of metabolic syndrome even in the non-obese. Diabetes Metab. Syndr. 2014, 8, 177–183. [Google Scholar] [CrossRef]
- Gadd, M.; Sundquist, J.; Johansson, S.E.; Wandell, P. Do immigrants have an increased prevalence of unhealthy behaviours and risk factors for coronary heart disease? Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 535–541. [Google Scholar] [CrossRef]
- Tseng, M.; Wright, D.J.; Fang, C.Y. Acculturation and dietary change among Chinese immigrant women in United States. J. Immigr. Minor. Health 2015, 17, 400–407. [Google Scholar] [CrossRef]
- Sattar, N.; Gill, J.M.R. Type 2 diabetes in migrant South Asians: Mechanisms, mitigation and management. Lancet Diabetes Enddocrinol. 2015, 3, 1004–1016. [Google Scholar] [CrossRef] [Green Version]
- Silbiger, J.J.; Stein, R.; Roy, M.; Nair, M.K.; Cohen, P.; Shaffer, J.; Pinkhasov, A.; Kamran, M. Coronary artery disease in South Asian immigrants living in New York City: Angiographic findings and risk factors burdens. Ethn. Dis. 2013, 23, 292–295. [Google Scholar]
- Yang, S.J.; Chee, Y.K.; Kim, J.A.; An, J. Metabolic syndrome and its related factors among Asian immigrant women in Korea. Nurs. Health Sci. 2014, 16, 373–380. [Google Scholar] [CrossRef] [PubMed]
- STEPwise Approach to Chronic Disease Risk Factor Surveillance; World Health Organization: Geneva, Switzerland, 2005. Available online: https://www.who.int/teams/noncommunicable-diseases/surveillance/data/democratic-people-s-republic-of-korea (accessed on 30 March 2021).
- Kang, Y.H. Two Koreas, war and health. Int. J. Epidemiol. 2013, 42, 925–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCurry, J. No end in sight for North Korea’s malnutrition crisis. Lancet 2012, 379, 602. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, M.K.; Chun, K.H.; Lee, Y.K.; Yoon, S.J. Trauma experience of North Korean refugees in China. Am. J. Prev. Med. 2001, 20, 225–229. [Google Scholar] [CrossRef]
- Current Status of North Korean Refugees’ Resettlement; Ministry of Unification: Seoul, Korea, 2021. Available online: http://unikorea.go.kr/unikorea/business/NKDefectorsPolicy/status/lately (accessed on 30 March 2021).
- Kim, Y.J.; Kim, S.G.; Lee, Y.H. Prevalence of general and central obesity and associated factors among North Korean refugees in South Korea by duration after defection from North Korea: A cross-sectional study. Int. J. Environ. Res. Public Health 2018, 15, 811. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, Y.H.; Lee, Y.J.; Kim, K.J.; An, J.H.; Kim, N.H.; Kim, H.Y.; Choi, D.S.; Kim, S.G. Prevalence of metabolic syndrome and its related factors among North Korean refugees in South Korea: A cross-sectional study. BMJ Open 2016, 6, e010849. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Lee, W.J.; Kim, Y.J.; Cho, M.J.; Kim, J.H.; Lee, Y.J.; Kim, H.Y.; Choi, D.S.; Kim, S.G.; Robinson, C. North Korean refugee health in South Korea (NORNS) study: Study design and methods. BMC Public Health 2012, 12, 172. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.-Y.; Yang, C.-Y.; Shih, S.-R.; Hsieh, H.-J.; Hung, C.S.; Chiu, F.-C.; Lin, M.-S.; Liu, P.-H.; Hua, C.-H.; Hsein, Y.-C.; et al. Measurement of waist circumference: Midabdominal or iliac crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobalava, Z.D.; Kotovskaya, Y.V.; Babaeva, L.A.; Moiseev, V.S. Validation of TM-2655 oscillometric device for blood pressure measurement. Blood Press. Monit. 2006, 11, 87–90. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.E.; Jacobs, D.R.; McCreath, H.; Kiefe, C.I.; Schreiner, P.J.; Smith, D.E.; Williams, O.D. Weight gain continues in the 1990s: 10-year trends in weight and overweight from the CARDIA study. Coronary Artery Risk Development in Young Adults. Am. J. Epidemiol. 2000, 151, 1172–1181. [Google Scholar] [CrossRef]
- Willett, W.C.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Speizer, F.E.; Hennekens, C.H. Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA 1995, 273, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa-Takata, K.; Ohta, T.; Moritaki, K.; Gotou, T.; Inoue, S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur. J. Clin. Nutr. 2002, 56, 601–607. [Google Scholar] [CrossRef]
- Truesdale, K.P.; Stevens, J.; Lewis, C.E.; Schreiner, P.J.; Loria, C.M.; Cai, J. Changes in risk factors for cardiovascular disease by baseline weight status in young adults who maintain or gain weight over 15 years: The CARDIA study. Int. J. Obes. 2006, 30, 1397–1407. [Google Scholar] [CrossRef] [Green Version]
- Wing, R.R.; Espeland, M.A.; Tate, D.F.; Perdue, L.H.; Bahnson, J.; Polzien, K.; Robichaud, E.F.; LaRose, J.G.; Gorin, A.A.; Lewis, C.E.; et al. Study of Novel Approaches to Weight Gain Prevention Research Group. Changes in cardiovascular risk factors over 6 years in young adults in a randomized trial of weight gain prevention. Obesity 2020, 28, 2323–2330. [Google Scholar] [CrossRef]
- Alley, D.E.; Chang, V.W. Metabolic syndrome and weight gain in adulthood. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, A.B.; Strogatz, D.S.; James, S.A.; Raghunathan, T.E. The contribution of baseline weight and weight gain to blood pressure change in African Americans: The Pitt County Study. Ann. Epidemiol. 1998, 8, 497–503. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J. The thrifty phenotype hypothesis. Br. Med. Bull. 2001, 60, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.W.; Lee, S.H.; Koh, E.S.; Kim, S.E.; Kim, S.J. Characteristics of body composition and muscle strength of North Korean refugees during South Korean Stay. Endocrinol. Metab. 2015, 30, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Park, S.M. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: A cross-sectional study. Sci. Rep. 2018, 8, 2703. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Karlamangla, A.S. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; Lee, S.; Jun, J.E.; Lee, Y.; Ahn, J.; Bae, J.C.; Jin, S.; Hur, K.Y.; Jee, J.H.; Lee, M.; et al. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: A 7-year retrospective cohort study. Cardiovasc. Diabetol. 2018, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Current Stats Survey on North Korean Refugees Living in South Korea (Korean); North Korean Refugee Foundation: Seoul, Korea, 2012.
- Tamakoshi, K.; Yatsuya, H.; Kondo, T.; Hirano, T.; Hori, Y.; Yoshida, T.; Toyoshima, H. The accuracy of long-term recall of past body weight in Japanese adult men. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Kyulo, N.L.; Knutsen, S.F.; Tonstad, S.; Fraser, G.E.; Singh, P.N. Validation of recall of body weight over a 26-year period in cohort members of the Adventist Health Study 2. Ann. Epidemiol. 2012, 22, 744–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Cheng, X.; Wang, J.; Cao, Q.; Sato, T.; Wang, M.; Zhao, X.; Liang, W. Comparisons of body-composition prediction accuracy: A study of 2 bioelectric impedance consumer devices in healthy Chinese persons using DXA and MRI as criteria methods. J. Clin. Densitom. 2011, 14, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Sahyoun, N.R.; Jacques, P.F.; Zhang, X.L.; Juan, W.; Mckeown, N.M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 2006, 83, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Goodman-Gruen, D.; Kritz-Silverstein, D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J. Nutr. 2001, 131, 1202–1206. [Google Scholar] [CrossRef]
- Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019, 129, 4050–4057. [Google Scholar] [CrossRef]
Weigh Gain < 5 kg (n = 546) | Weight Gain ≥ 5 kg (n = 253) | p-Value | |
---|---|---|---|
Age | 43.25 ± 12.31 | 44.78 ± 12.97 | 0.108 |
Sex (male) | 109/545 (20%) | 53/253 (21%) | 0.794 |
Height (cm) | 156.26 ± 7.28 | 157.3 ± 7.41 | 0.061 |
Body weight (kg) | 53.60 ± 7.37 | 60.7 ± 8.65 | <0.001 |
BMI (kg/m2) | 21.98 ± 2.47 | 24.48 ± 2.68 | <0.001 |
Waist circumference (cm) | 76.50 ± 7.79 | 83.69 ± 8.57 | <0.001 |
Fasting glucose (mg/dL) | 93.21 ± 10.76 | 95.93 ± 13.64 | 0.003 |
Total cholesterol (mg/dL) | 174.93 ± 37.21 | 178.85 ± 38.60 | 0.173 |
Triglyceride (mg/dL | 97.61 ± 92.92 | 113.04 ± 78.62 | 0.023 |
HDL cholesterol (mg/dL) | 54.86 ± 28.58 | 51.38 ± 12.16 | 0.065 |
AST (mg/dL) | 21.42 ± 11.45 | 22.22 ± 14.73 | 0.407 |
ALT (mg/dL) | 18.01 ± 17.65 | 21.75 ± 23.08 | 0.012 |
HOMA-IR | 1.38 ± 1.29 | 1.68 ± 1.11 | 0.002 |
HOMA-ß | 74.06 ± 45.76 | 79.67 ± 44.90 | 0.112 |
Systolic BP (mmHg) | 116.81 ± 16.71 | 121.69 ± 18.30 | <0.001 |
Diastolic BP (mmHg) | 75.27 ± 12.80 | 77.79 ± 12.76 | 0.01 |
Current smoker | 65/546 (12%) | 23/253 (9%) | 0.238 |
Frequent alcohol drinking * | 349/546 (64%) | 156/253 (62%) | 0.506 |
Regular exercise † | 262/546 (48%) | 134/253 (53%) | 0.191 |
BMI in North Korea (kg/m2) | 22.14 ± 2.69 | 20.46 ± 2.71 | <0.001 |
Weight in North Korea (kg) | 54.10 ± 7.78 | 50.74 ± 8.32 | <0.001 |
Weight change (kg) | −0.5 ± 3.96 | 10.0 ± 4.8 | <0.001 |
Defection period (yr) | 6.67 ± 4.62 | 7.91 ± 4.97 | 0.001 |
Stay in transit country (yr) | 3.58 ± 3.76 | 3.86 ± 3.68 | 0.333 |
Income (>106 KRW/month) | 95.49 ± 93.73 | 108.15 ± 132.28 | 0.196 |
Higher education ‡ | 115/546 (21%) | 48/253 (19%) | 0.582 |
Weigh Gain < 5 kg (n = 543) | Weight Gain ≥ 5 kg (n = 250) | p-Value | |
---|---|---|---|
Metabolic syndrome | 53/527 (10%) | 63/243 (26%) | <0.001 |
Central obesity * | 64/537 (12%) | 89/247 (36%) | <0.001 |
Impaired fasting glucose † | 103/543 (19%) | 80/250 (32%) | <0.001 |
Elevated blood pressure ‡ | 134/538 (25%) | 85/250 (34%) | 0.008 |
Hypertriglyceridemia § | 72/543 (13%) | 47/250 (19%) | 0.025 |
Low HDL cholesterol ‖ | 195/543 (36%) | 95/250 (38%) | 0.434 |
Weigh Gain < 5 kg (n = 545) | Weight Gain ≥ 5 kg (n = 252) | p-Value | |
---|---|---|---|
Body weight (kg) | 53.60 ± 7.37 | 60.7 ± 8.65 | <0.001 |
Muscle mass (kg) | 20.67 ± 4.11 | 21.88 ± 4.60 | <0.001 |
Fat mass (kg) | 15.73 ± 5.88 | 20.32 ± 5.01 | <0.001 |
Percentage of body fat (%) | 28.88 ± 7.40 | 33.4 ± 6.53 | <0.001 |
Model 1 (n = 769) | Model 2 (n = 509) | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age * | 1.073 | < 0.001 | 1.056 | <0.001 |
(1.049–1.097) | (1.030–1.081) | |||
Sex | 2.708 | 0.032 | 2.852 | 0.029 |
(male as reference) | (1.090–6.729) | (1.112–7.317) | ||
Weight gain (≥5 kg) | 3.392 | < 0.001 | 1.875 | 0.045 |
(1.973–5.832) | (1.013–3.468) | |||
Current smoker | 2.479 | 0.100 | 3.128 | 0.051 |
(nonsmoker as reference) | (0.841–7.307) | (0.997–9.820) | ||
Frequent alcohol drinking † | 0.962 | 0.887 | 0.937 | 0.827 |
(nondrinker as reference) | (0.560–1.62) | (0.520–1.686) | ||
Regular exercise ‡ | 0.818 | 0.468 | 0.724 | 0.290 |
(0.476–1.407) | (0.398–1.317) | |||
Stay in transit country (years) | 0.973 | 0.629 | 0.988 | 0.853 |
(0.870–1.088) | (0.873–1.119) | |||
Defection period (years) | 1.010 | 0.817 | 0.979 | 0.644 |
(0.930–1.096) | (0.893–1.072) | |||
Higher education § | 0.843 | 0.612 | 0.728 | 0.393 |
(0.435–1.633) | (0.351–1.509) | |||
Higher income | 0.579 | 0.094 | 0.634 | 0.190 |
(>106 KRW/month) | (0.305–1.098) | (0.321–1.254) | ||
BMI | 1.312 | 0.001 | ||
(1.177–1.463) | ||||
Lipid medication | 0.866 | 0.480 | ||
(0.651–0.125) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.J.; Lee, Y.H.; Lee, Y.J.; Kim, K.J.; Kim, S.G. Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 8479. https://doi.org/10.3390/ijerph18168479
Kim YJ, Lee YH, Lee YJ, Kim KJ, Kim SG. Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea. International Journal of Environmental Research and Public Health. 2021; 18(16):8479. https://doi.org/10.3390/ijerph18168479
Chicago/Turabian StyleKim, Yoon Jung, Yo Han Lee, Yun Jeong Lee, Kyeong Jin Kim, and Sin Gon Kim. 2021. "Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea" International Journal of Environmental Research and Public Health 18, no. 16: 8479. https://doi.org/10.3390/ijerph18168479
APA StyleKim, Y. J., Lee, Y. H., Lee, Y. J., Kim, K. J., & Kim, S. G. (2021). Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea. International Journal of Environmental Research and Public Health, 18(16), 8479. https://doi.org/10.3390/ijerph18168479