Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility?
Abstract
:1. Introduction
2. Exposure Sources and Concentrations in the Population
3. Fetal Exposure to PFOS/PFOA Correlate with Changes in Birth Weight and Size
4. Studies Linking Environmentally Relevant Exposure to Male Reproductive Health
4.1. Sex Differences in Elimination Rates in Rats and Higher PFOS/PFOA Levels in Males in the Human General Population
4.2. Epidemiological Evidence Linking PFOS and PFOA to Human Male Reproductive Health
4.3. Rodent Studies Linking PFOS and PFOA to Male Reproductive Health
- (i)
- Lack of experimental verification of levels of PFOS and PFOA in the serum make it hard to interpret results from rodent studies. Most studies have estimated values of PFOS/PFOA based on previous studies (reviewed by Olsen et al., 2009 [129]). In most cases, PFOS/PFOA accumulation levels in the testes are ignored.
- (ii)
- Strain differences within the tested rodent population are an added complication. Studies with endocrine disruptors have shown that some strains of rats and mice are more susceptible to endocrine disruptors than others (discussed in Ashby, 2001 [130]).
- (iii)
4.4. Challenges and Areas of Future Research
5. Mechanism of Action of PFOS and PFOA
5.1. Leydig Cells
5.2. Sertoli Cells
5.3. Germ Cells
5.4. Prospective Areas of Investigation into Modes of Action
6. Looking to the Future
7. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Bach, C.C.; Bech, B.H.; Brix, N.; Nohr, E.A.; Bonde, J.P.; Henriksen, T.B. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: A systematic review. Crit. Rev. Toxicol. 2015, 45, 53–67. [Google Scholar] [CrossRef]
- Bach, C.C.; Vested, A.; Jørgensen, K.T.; Bonde, J.P.; Henriksen, T.B.; Toft, G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: A systematic review. Crit. Rev. Toxicol. 2016, 46, 735–755. [Google Scholar] [CrossRef]
- Blake, B.E.; Fenton, S.E. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020, 443, 152565. [Google Scholar] [CrossRef]
- Foresta, C.; Tescari, S.; Di Nisio, A. Impact of perfluorochemicals on human health and reproduction: A male’s perspective. J. Endocrinol. Investig. 2018, 41, 639–645. [Google Scholar] [CrossRef]
- Gebbink, W.A.; van Leeuwen, S.P.J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ. Int. 2020, 137, 105583. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E.; Hocevar, B.A.; Kamendulis, L.M. Mode of Action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and Human Relevance. Reprod. Toxicol. 2012, 33, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Luz, A.L.; Anderson, J.K.; Goodrum, P.; Durda, J. Perfluorohexanoic acid toxicity, part I: Development of a chronic human health toxicity value for use in risk assessment. Regul. Toxicol. Pharm. 2019, 103, 41–55. [Google Scholar] [CrossRef]
- Kissa, E. Fluorinated Surfactants: Synthesis–Properties–Applications; Marcel Dekker: New York, NY, USA, 1994; p. 469. [Google Scholar]
- Kissa, E. Fluorinated Surfactants and Repellents, 2nd ed.; Revised and Expanded; Marcel Dekker: New York, NY, USA, 2001; p. 640. [Google Scholar]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 2014, 50, 318–340. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Res. 2017, 124, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Crawford, N.M.; Fenton, S.E.; Strynar, M.; Hines, E.P.; Pritchard, D.A.; Steiner, A.Z. Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and natural fertility. Reprod. Toxicol. 2017, 69, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, J.L.; Nadal, M. Per- and Polyfluoroalkyl Substances (PFASs) in Food and Human Dietary Intake: A Review of the Recent Scientific Literature. J. Agric. Food Chem. 2017, 65, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Blake, B.E.; Pinney, S.M.; Hines, E.P.; Fenton, S.E.; Ferguson, K.K. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ. Pollut. 2018, 242, 894–904. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program (NTP). National Toxicology Program Monograph on Immunotoxicity Associated with Exposures to Pfoa and Pfos. 2016. Available online: http://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf (accessed on 31 March 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Per- and Polyfluoroalkyl Substances (PFAS) and Your Health; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2020. [Google Scholar]
- Benbrahim-Tallaa, L.; Lauby-Secretan, B.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone. Lancet Oncol. 2014, 15, 924–925. [Google Scholar] [CrossRef]
- Olsen, G.W.; Ley, C.A. Prostate Cancer and PFOA. J. Occup. Environ. Med. 2015, 57, e60. [Google Scholar] [CrossRef]
- Gilliland, F.D.; Mandel, J.S. Mortality among employees of a perfluorooctanoic acid production plant. J. Occup. Med. 1993, 35, 950–954. [Google Scholar] [CrossRef]
- Gabrielsen, J.S.; Tanrikut, C. Chronic exposures and male fertility: The impacts of environment, diet, and drug use on spermatogenesis. Andrology 2016, 4, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Drevinskaite, M.; Patasius, A.; Kincius, M.; Jievaltas, M.; Smailyte, G. A Population-Based Analysis of Incidence, Mortality, and Survival in Testicular Cancer Patients in Lithuania. Medicina 2019, 55, 552. [Google Scholar] [CrossRef] [Green Version]
- Le Cornet, C.; Lortet-Tieulent, J.; Forman, D.; Béranger, R.; Flechon, A.; Fervers, B.; Schüz, J.; Bray, F. Testicular cancer incidence to rise by 25% by 2025 in Europe? Model-based predictions in 40 countries using population-based registry data. Eur. J. Cancer 2014, 50, 831–839. [Google Scholar] [CrossRef]
- Hanson, H.A.; Anderson, R.E.; Aston, K.I.; Carrell, D.T.; Smith, K.R.; Hotaling, J.M. Subfertility increases risk of testicular cancer: Evidence from population-based semen samples. Fertil. Steril. 2016, 105, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.J.; Croughan, M.S.; Schembri, M.; Chan, J.M.; Turek, P.J. Increased risk of testicular germ cell cancer among infertile men. Arch. Intern. Med. 2009, 169, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Møller, H.; Skakkebaek, N.E. Risk of testicular cancer in subfertile men: Case-control study. BMJ 1999, 318, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Biegel, L.B.; Liu, R.C.; Hurtt, M.E.; Cook, J.C. Effects of ammonium perfluorooctanoate on Leydig cell function: In vitro, in vivo, and ex vivo studies. Toxicol. Appl. Pharm. 1995, 134, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, C.; Wen, Z.; Yan, H.; Zou, C.; Li, Y.; Tian, L.; Lei, Z.; Li, H.; Wang, Y.; et al. Perfluoroheptanoic acid induces Leydig cell hyperplasia but inhibits spermatogenesis in rats after pubertal exposure. Toxicology 2020, 448, 152633. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Wu, J.; Wei, X.; Xu, A.; Wang, S.; Wang, Z. Male reproductive toxicity of perfluorooctanoate (PFOA): Rodent studies. Chemosphere 2020, 270, 128608. [Google Scholar] [CrossRef]
- Zhao, B.; Li, L.; Liu, J.; Li, H.; Zhang, C.; Han, P.; Zhang, Y.; Yuan, X.; Ge, R.S.; Chu, Y. Exposure to perfluorooctane sulfonate in utero reduces testosterone production in rat fetal Leydig cells. PLoS ONE 2014, 9, e78888. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Pan, Y.; Wang, J.; Liu, H.; Yao, B.; Dai, J. Exposure to per- and polyfluoroalkyl substances (PFASs) in serum versus semen and their association with male reproductive hormones. Environ. Pollut. 2020, 266, 115330. [Google Scholar] [CrossRef]
- Di Nisio, A.; Sabovic, I.; Valente, U.; Tescari, S.; Rocca, M.S.; Guidolin, D.; Dall’Acqua, S.; Acquasaliente, L.; Pozzi, N.; Plebani, M.; et al. Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence. J. Clin. Endocrinol. Metab. 2019, 104, 1259–1271. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Hardy, M.P. Leydig Cell Function in Man. In Male Hypogonadism: Basic, Clinical, and Therapeutic Principles; Winters, S.J., Ed.; Humana Press: Totowa, NJ, USA, 2004; pp. 23–43. [Google Scholar]
- Jensen, A.A.; Leffers, H. Emerging endocrine disrupters: Perfluoroalkylated substances. Int. J. Androl. 2008, 31, 161–169. [Google Scholar] [CrossRef]
- Joensen, U.N.; Bossi, R.; Leffers, H.; Jensen, A.A.; Skakkebaek, N.E.; Jørgensen, N. Do perfluoroalkyl compounds impair human semen quality? Environ. Health Perspect. 2009, 117, 923–927. [Google Scholar] [CrossRef]
- Joensen, U.N.; Veyrand, B.; Antignac, J.P.; Blomberg Jensen, M.; Petersen, J.H.; Marchand, P.; Skakkebæk, N.E.; Andersson, A.M.; Le Bizec, B.; Jørgensen, N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum. Reprod. 2013, 28, 599–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.S.; Halling, J.; Jørgensen, N.; Nielsen, F.; Grandjean, P.; Jensen, T.K.; Weihe, P. Reproductive Function in a Population of Young Faroese Men with Elevated Exposure to Polychlorinated Biphenyls (PCBs) and Perfluorinated Alkylate Substances (PFAS). Int. J. Environ. Res. Public Health 2018, 15, 1880. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.N. Aromatase inhibitors for male infertility. Fertil. Steril. 2012, 98, 1359–1362. [Google Scholar] [CrossRef]
- Coperchini, F.; Awwad, O.; Rotondi, M.; Santini, F.; Imbriani, M.; Chiovato, L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J. Endocrinol. Investig. 2017, 40, 105–121. [Google Scholar] [CrossRef]
- White, S.S.; Fenton, S.E.; Hines, E.P. Endocrine disrupting properties of perfluorooctanoic acid. J. Steroid Biochem. Mol. Biol. 2011, 127, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.S. Homage to the ‘H’ in developmental origins of health and disease. J. Dev. Orig. Health Dis. 2017, 8, 8–29. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Mann, U.; Shiff, B.; Patel, P. Reasons for worldwide decline in male fertility. Curr. Opin. Urol. 2020, 30, 296–301. [Google Scholar] [CrossRef]
- Hill, C.E.; Myers, J.P.; Vandenberg, L.N. Nonmonotonic Dose-Response Curves Occur in Dose Ranges That Are Relevant to Regulatory Decision-Making. Dose Response 2018, 16, 1559325818798282. [Google Scholar] [CrossRef]
- Lee, D.H. Evidence of the Possible Harm of Endocrine-Disrupting Chemicals in Humans: Ongoing Debates and Key Issues. Endocrinol. Metab. 2018, 33, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, R.T.; Vandenberg, L.N. Assessing dose-response relationships for endocrine disrupting chemicals (EDCs): A focus on non-monotonicity. Environ. Health 2015, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Appleman, T.D.; Higgins, C.P.; Quinones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Munoz, G.; Labadie, P.; Botta, F.; Lestremau, F.; Lopez, B.; Geneste, E.; Pardon, P.; Devier, M.H.; Budzinski, H. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci. Total Environ. 2017, 607–608, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524–525, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Holzer, J.; Goen, T.; Rauchfuss, K.; Kraft, M.; Angerer, J.; Kleeschulte, P.; Wilhelm, M. One-year follow-up of perfluorinated compounds in plasma of German residents from Arnsberg formerly exposed to PFOA-contaminated drinking water. Int. J. Hyg. Environ. Health 2009, 212, 499–504. [Google Scholar] [CrossRef]
- Fromme, H.; Wöckner, M.; Roscher, E.; Völkel, W. ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. Int. J. Hyg. Environ. Health 2017, 220, 455–460. [Google Scholar] [CrossRef]
- Apelberg, B.J.; Witter, F.R.; Herbstman, J.B.; Calafat, A.M.; Halden, R.U.; Needham, L.L.; Goldman, L.R. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ. Health Perspect. 2007, 115, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Bartell, S.M.; Calafat, A.M.; Lyu, C.; Kato, K.; Ryan, P.B.; Steenland, K. Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environ. Health Perspect. 2010, 118, 222–228. [Google Scholar] [CrossRef]
- Fei, C.; McLaughlin, J.K.; Tarone, R.E.; Olsen, J. Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort. Environ. Health Perspect. 2007, 115, 1677–1682. [Google Scholar] [CrossRef]
- Szabo, D.; Coggan, T.L.; Robson, T.C.; Currell, M.; Clarke, B.O. Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci. Total Environ. 2018, 644, 1409–1417. [Google Scholar] [CrossRef]
- Becker, A.M.; Gerstmann, S.; Frank, H. Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere 2008, 72, 115–121. [Google Scholar] [CrossRef]
- Ross, I.; McDonough, J.; Miles, J.; Storch, P.; Thelakkat Kochunarayanan, P.; Kalve, E.; Hurst, J.S.; Dasgupta, S.; Burdick, J. A review of emerging technologies for remediation of PFASs. Remediat. J. 2018, 28, 101–126. [Google Scholar] [CrossRef]
- Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 2007, 115, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Webster, T.F.; Bartell, S.M.; Weisskopf, M.G.; Fletcher, T.; Vieira, V.M. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility. Environ. Health Perspect. 2011, 119, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Fromme, H.; Tittlemier, S.A.; Völkel, W.; Wilhelm, M.; Twardella, D. Perfluorinated compounds--exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health 2009, 212, 239–270. [Google Scholar] [CrossRef]
- Yamada, A.; Bemrah, N.; Veyrand, B.; Pollono, C.; Merlo, M.; Desvignes, V.; Sirot, V.; Marchand, P.; Berrebi, A.; Cariou, R.; et al. Dietary exposure to perfluoroalkyl acids of specific French adult sub-populations: High seafood consumers, high freshwater fish consumers and pregnant women. Sci. Total Environ. 2014, 491–492, 170–175. [Google Scholar] [CrossRef]
- Fraser, A.J.; Webster, T.F.; Watkins, D.J.; Strynar, M.J.; Kato, K.; Calafat, A.M.; Vieira, V.M.; McClean, M.D. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environ. Int. 2013, 60, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Wong, L.Y.; Jia, L.T.; Kuklenyik, Z.; Calafat, A.M. Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008. Environ. Sci. Technol. 2011, 45, 8037–8045. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Tully, J.S.; Needham, L.L. Serum concentrations of 11 polyfluoroalkyl compounds in the U.S. population: Data from the national health and nutrition examination survey (NHANES). Environ. Sci. Technol. 2007, 41, 2237–2242. [Google Scholar] [CrossRef]
- Louis, G.M.; Chen, Z.; Schisterman, E.F.; Kim, S.; Sweeney, A.M.; Sundaram, R.; Lynch, C.D.; Gore-Langton, R.E.; Barr, D.B. Perfluorochemicals and human semen quality: The LIFE study. Environ. Health Perspect. 2015, 123, 57–63. [Google Scholar] [CrossRef]
- Olsen, G.W.; Ellefson, M.E.; Mair, D.C.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Medhdizadehkashi, Z.; Nobiletti, J.B.; Rios, J.A.; Reagen, W.K.; et al. Analysis of a homologous series of perfluorocarboxylates from American Red Cross adult blood donors, 2000-2001 and 2006. Environ. Sci. Technol. 2011, 45, 8022–8029. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Steenland, K.; Jin, C.; MacNeil, J.; Lally, C.; Ducatman, A.; Vieira, V.; Fletcher, T. Predictors of PFOA levels in a community surrounding a chemical plant. Environ. Health Perspect. 2009, 117, 1083–1088. [Google Scholar] [CrossRef]
- Dobraca, D.; Israel, L.; McNeel, S.; Voss, R.; Wang, M.; Gajek, R.; Park, J.S.; Harwani, S.; Barley, F.; She, J.; et al. Biomonitoring in California firefighters: Metals and perfluorinated chemicals. J. Occup. Environ. Med. 2015, 57, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Rotander, A.; Kärrman, A.; Toms, L.M.; Kay, M.; Mueller, J.F.; Gómez Ramos, M.J. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ. Sci. Technol. 2015, 49, 2434–2442. [Google Scholar] [CrossRef]
- Tao, L.; Kannan, K.; Aldous, K.M.; Mauer, M.P.; Eadon, G.A. Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center disaster. Environ. Sci. Technol. 2008, 42, 3472–3478. [Google Scholar] [CrossRef]
- Emmett, E.A.; Shofer, F.S.; Zhang, H.; Freeman, D.; Desai, C.; Shaw, L.M. Community exposure to perfluorooctanoate: Relationships between serum concentrations and exposure sources. J. Occup. Environ. Med. 2006, 48, 759–770. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Draft Risk Assessment of the Potential Human Health Effects Associated with Exposure to Perfluorooctanoic Acid and Its Salts; US EPA Office of Pollution Prevention Toxics Risk Assessment Division: Washington, DC, USA, 2005; AR2261136.
- Tanner, E.M.; Bloom, M.S.; Wu, Q.; Kannan, K.; Yucel, R.M.; Shrestha, S.; Fitzgerald, E.F. Occupational exposure to perfluoroalkyl substances and serum levels of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in an aging population from upstate New York: A retrospective cohort study. Int. Arch. Occup Environ. Health 2018, 91, 145–154. [Google Scholar] [CrossRef]
- Post, G.B. Recent US State and Federal Drinking Water Guidelines for Per- and Polyfluoroalkyl Substances. Environ. Toxicol Chem. 2020, 40, 550–563. [Google Scholar] [CrossRef]
- Cui, J.; Gao, P.; Deng, Y. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environ. Sci. Technol. 2020, 54, 3752–3766. [Google Scholar] [CrossRef]
- Pérez, F.; Nadal, M.; Navarro-Ortega, A.; Fàbrega, F.; Domingo, J.L.; Barceló, D.; Farré, M. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int. 2013, 59, 354–362. [Google Scholar] [CrossRef]
- Stubleski, J.; Salihovic, S.; Lind, P.M.; Lind, L.; Dunder, L.; McCleaf, P.; Eurén, K.; Ahrens, L.; Svartengren, M.; van Bavel, B.; et al. The effect of drinking water contaminated with perfluoroalkyl substances on a 10-year longitudinal trend of plasma levels in an elderly Uppsala cohort. Environ. Res. 2017, 159, 95–102. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Senzaki, N.; Mazawa, D.; Sato, I.; Hara, M.; Ueda, F.; Liu, W.; Tsuda, S. Tissue toxicokinetics of perfluoro compounds with single and chronic low doses in male rats. J. Toxicol. Sci. 2017, 42, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Zhou, Q.F.; Liao, C.Y.; Fu, J.J.; Jiang, G.B. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch. Environ. Contam. Toxicol. 2009, 56, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Blake, B.E.; Cope, H.A.; Hall, S.M.; Keys, R.D.; Mahler, B.W.; McCord, J.; Scott, B.; Stapleton, H.M.; Strynar, M.J.; Elmore, S.A.; et al. Evaluation of Maternal, Embryo, and Placental Effects in CD-1 Mice following Gestational Exposure to Perfluorooctanoic Acid (PFOA) or Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX). Environ. Health Perspect. 2020, 128, 27006. [Google Scholar] [CrossRef] [PubMed]
- Verner, M.A.; Ngueta, G.; Jensen, E.T.; Fromme, H.; Völkel, W.; Nygaard, U.C.; Granum, B.; Longnecker, M.P. A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs). Environ. Sci. Technol. 2016, 50, 978–986. [Google Scholar] [CrossRef]
- Grønnestad, R.; Villanger, G.D.; Polder, A.; Kovacs, K.M.; Lydersen, C.; Jenssen, B.M.; Borgå, K. Maternal transfer of perfluoroalkyl substances in hooded seals. Environ. Toxicol. Chem. 2017, 36, 763–770. [Google Scholar] [CrossRef]
- Mamsen, L.S.; Björvang, R.D.; Mucs, D.; Vinnars, M.T.; Papadogiannakis, N.; Lindh, C.H.; Andersen, C.Y.; Damdimopoulou, P. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ. Int. 2019, 124, 482–492. [Google Scholar] [CrossRef]
- Mamsen, L.S.; Jönsson, B.A.G.; Lindh, C.H.; Olesen, R.H.; Larsen, A.; Ernst, E.; Kelsey, T.W.; Andersen, C.Y. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. Sci. Total Environ. 2017, 596–597, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Goeden, H.M.; Greene, C.W.; Jacobus, J.A. A transgenerational toxicokinetic model and its use in derivation of Minnesota PFOA water guidance. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washino, N.; Saijo, Y.; Sasaki, S.; Kato, S.; Ban, S.; Konishi, K.; Ito, R.; Nakata, A.; Iwasaki, Y.; Saito, K.; et al. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ. Health Perspect. 2009, 117, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggert, A.; Cisneros-Montalvo, S.; Anandan, S.; Musilli, S.; Stukenborg, J.B.; Adamsson, A.; Nurmio, M.; Toppari, J. The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reprod. Toxicol. 2019, 90, 68–76. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Chen, P.; Chen, X.; Sun, C.; Ge, R.S.; Su, Z.; Ye, L. Effects of gestational Perfluorooctane Sulfonate exposure on the developments of fetal and adult Leydig cells in F1 males. Environ. Pollut. 2020, 262, 114241. [Google Scholar] [CrossRef]
- Vanden Heuvel, J.P.; Kuslikis, B.I.; Van Rafelghem, M.J.; Peterson, R.E. Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J. Biochem. Toxicol. 1991, 6, 83–92. [Google Scholar] [CrossRef]
- Hanhijärvi, H.; Ophaug, R.H.; Singer, L. The sex-related difference in perfluorooctanoate excretion in the rat. Proc. Soc. Exp. Biol. Med. 1982, 171, 50–55. [Google Scholar] [CrossRef]
- Ylinen, M.; Hanhijärvi, H.; Jaakonaho, J.; Peura, P. Stimulation by oestradiol of the urinary excretion of perfluorooctanoic acid in the male rat. Pharm. Toxicol. 1989, 65, 274–277. [Google Scholar] [CrossRef]
- Kudo, N.; Suzuki, E.; Katakura, M.; Ohmori, K.; Noshiro, R.; Kawashima, Y. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chem. Biol. Interact. 2001, 134, 203–216. [Google Scholar] [CrossRef]
- Kemper, R.A. Perfluorooctanoic Acid: Toxicokinetics in the Rat. Report ID: DuPont-7473. USEPA Administrative Record AR-226.1499; DuPont Haskell Laboratories: Concord, NE, USA, 2003. [Google Scholar]
- Vanden Heuvel, J.P.; Davis, J.W., 2nd; Sommers, R.; Peterson, R.E. Renal excretion of perfluorooctanoic acid in male rats: Inhibitory effect of testosterone. J. Biochem. Toxicol. 1992, 7, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Post, G.B.; Cohn, P.D.; Cooper, K.R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ. Res. 2012, 116, 93–117. [Google Scholar] [CrossRef]
- Olsen, G.W.; Mair, D.C.; Church, T.R.; Ellefson, M.E.; Reagen, W.K.; Boyd, T.M.; Herron, R.M.; Medhdizadehkashi, Z.; Nobiletti, J.B.; Rios, J.A.; et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000–2006. Environ. Sci. Technol. 2008, 42, 4989–4995. [Google Scholar] [CrossRef] [Green Version]
- Olsen, G.W.; Gilliland, F.D.; Burlew, M.M.; Burris, J.M.; Mandel, J.S.; Mandel, J.H. An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid. J. Occup. Environ. Med. 1998, 40, 614–622. [Google Scholar] [CrossRef]
- Pan, Y.; Cui, Q.; Wang, J.; Sheng, N.; Jing, J.; Yao, B.; Dai, J. Profiles of Emerging and Legacy Per-/Polyfluoroalkyl Substances in Matched Serum and Semen Samples: New Implications for Human Semen Quality. Environ. Health Perspect. 2019, 127, 127005. [Google Scholar] [CrossRef]
- Toft, G.; Jönsson, B.A.; Lindh, C.H.; Giwercman, A.; Spano, M.; Heederik, D.; Lenters, V.; Vermeulen, R.; Rylander, L.; Pedersen, H.S.; et al. Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum. Reprod. 2012, 27, 2532–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, I.O.; Hougaard, K.S.; Spanò, M.; Bizzaro, D.; Manicardi, G.C.; Lindh, C.H.; Toft, G.; Jönsson, B.A.G.; Giwercman, A.; Bonde, J.P.E. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances-a study of spouses of pregnant women in three geographical regions. Reprod. Toxicol. 2012, 33, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Vested, A.; Ramlau-Hansen, C.H.; Olsen, S.F.; Bonde, J.P.; Kristensen, S.L.; Halldorsson, T.I.; Becher, G.; Haug, L.S.; Ernst, E.H.; Toft, G. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ. Health Perspect. 2013, 121, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Espinosa, M.J.; Mondal, D.; Armstrong, B.G.; Eskenazi, B.; Fletcher, T. Perfluoroalkyl Substances, Sex Hormones, and Insulin-like Growth Factor-1 at 6-9 Years of Age: A Cross-Sectional Analysis within the C8 Health Project. Environ. Health Perspect. 2016, 124, 1269–1275. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lin, C.Y.; Lin, C.C.; Chen, M.H.; Hsu, S.H.; Chien, K.L.; Sung, F.C.; Chen, P.C.; Su, T.C. Association between perfluoroalkyl substances and reproductive hormones in adolescents and young adults. Int. J. Hyg. Environ. Health 2015, 218, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Raymer, J.H.; Michael, L.C.; Studabaker, W.B.; Olsen, G.W.; Sloan, C.S.; Wilcosky, T.; Walmer, D.K. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their associations with human semen quality measurements. Reprod. Toxicol. 2012, 33, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, R.C.; Johns, L.E.; Meeker, J.D. Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011-2012. Int. J. Environ. Res. Public Health 2015, 12, 6098–6114. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Luo, B.; Yan, S.; Guo, X.; Dai, J. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery. J. Proteome Res. 2014, 13, 3370–3385. [Google Scholar] [CrossRef]
- Lai, K.P.; Lee, J.C.; Wan, H.T.; Li, J.W.; Wong, A.Y.; Chan, T.F.; Oger, C.; Galano, J.M.; Durand, T.; Leung, K.S.; et al. Effects of in Utero PFOS Exposure on Transcriptome, Lipidome, and Function of Mouse Testis. Environ. Sci. Technol. 2017, 51, 8782–8794. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Chen, X.; Chen, Y.; Liu, J.; Chen, F.; Ge, F.; Ye, L.; Lian, Q.; Ge, R.S. Perfluorooctane sulfonate impairs rat Leydig cell development during puberty. Chemosphere 2018, 190, 43–53. [Google Scholar] [CrossRef] [PubMed]
- López-Doval, S.; Salgado, R.; Pereiro, N.; Moyano, R.; Lafuente, A. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environ. Res. 2014, 134, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Li, D.; Wang, X.; Zhong, X. Effects of perfluorooctanoic acid exposure during pregnancy on the reproduction and development of male offspring mice. Andrologia 2018, 50, e13059. [Google Scholar] [CrossRef]
- Wan, H.T.; Zhao, Y.G.; Wong, M.H.; Lee, K.F.; Yeung, W.S.; Giesy, J.P.; Wong, C.K. Testicular signaling is the potential target of perfluorooctanesulfonate-mediated subfertility in male mice. Biol. Reprod. 2011, 84, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Hu, J.; Huang, Z.; Yu, M.; Lu, C.; Wang, X.; Wu, D. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. Ecotoxicol. Environ. Saf. 2019, 167, 412–421. [Google Scholar] [CrossRef]
- York, R.G.; Kennedy, G.L., Jr.; Olsen, G.W.; Butenhoff, J.L. Male reproductive system parameters in a two-generation reproduction study of ammonium perfluorooctanoate in rats and human relevance. Toxicology 2010, 271, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Butenhoff, J.L.; Kennedy, G.L., Jr.; Frame, S.R.; O’Connor, J.C.; York, R.G. The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology 2004, 196, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Luebker, D.J.; Case, M.T.; York, R.G.; Moore, J.A.; Hansen, K.J.; Butenhoff, J.L. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 2005, 215, 126–148. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Lu, C.C.; Xu, C.; Chen, G.; Qiu, L.L.; Jiang, J.K.; Ben, S.; Wang, Y.B.; Gu, A.H.; Wang, X.R. Perfluorooctane sulfonate-induced testicular toxicity and differential testicular expression of estrogen receptor in male mice. Environ. Toxicol. Pharm. 2016, 45, 150–157. [Google Scholar] [CrossRef]
- López-Doval, S.; Salgado, R.; Lafuente, A. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats. Chemosphere 2016, 155, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Huang, Q.; Wang, H.; Martin, F.L.; Liu, L.; Zhang, J.; Shen, H. Biphasic effects of perfluorooctanoic acid on steroidogenesis in mouse Leydig tumour cells. Reprod. Toxicol. 2019, 83, 54–62. [Google Scholar] [CrossRef]
- Liu, W.; Yang, B.; Wu, L.; Zou, W.; Pan, X.; Zou, T.; Liu, F.; Xia, L.; Wang, X.; Zhang, D. Involvement of NRF2 in Perfluorooctanoic Acid-Induced Testicular Damage in Male Mice. Biol. Reprod. 2015, 93, 41. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, B.; Li, J.; Dai, J. Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro. Arch. Toxicol. 2016, 90, 971–983. [Google Scholar] [CrossRef]
- Luebker, D.J.; York, R.G.; Hansen, K.J.; Moore, J.A.; Butenhoff, J.L. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: Dose-response, and biochemical and pharamacokinetic parameters. Toxicology 2005, 215, 149–169. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, X.; Zhang, X.; Zhang, Y.; Gu, J.; Chen, M.; Zhang, Z.; Wang, X.; Wang, S.L. Sertoli cell is a potential target for perfluorooctane sulfonate-induced reproductive dysfunction in male mice. Toxicol. Sci. 2013, 135, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Qian, Y.; Liu, Z.; Wang, C.; Qu, J.; Wang, X.; Wang, S. Perfluorooctane sulfonate (PFOS) disrupts blood-testis barrier by down-regulating junction proteins via p38 MAPK/ATF2/MMP9 signaling pathway. Toxicology 2016, 373, 1–12. [Google Scholar] [CrossRef]
- Olsen, G.W.; Butenhoff, J.L.; Zobel, L.R. Perfluoroalkyl chemicals and human fetal development: An epidemiologic review with clinical and toxicological perspectives. Reprod. Toxicol. 2009, 27, 212–230. [Google Scholar] [CrossRef]
- Ashby, J. Testing for endocrine disruption post-EDSTAC: Extrapolation of low dose rodent effects to humans. Toxicol. Lett. 2001, 120, 233–242. [Google Scholar] [CrossRef]
- Tarapore, P.; Hennessy, M.; Song, D.; Ying, J.; Ouyang, B.; Govindarajah, V.; Leung, Y.K.; Ho, S.M. Data on spermatogenesis in rat males gestationally exposed to bisphenol A and high fat diets. Data Brief. 2016, 9, 812–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarapore, P.; Hennessy, M.; Song, D.; Ying, J.; Ouyang, B.; Govindarajah, V.; Leung, Y.K.; Ho, S.M. High butter-fat diet and bisphenol A additively impair male rat spermatogenesis. Reprod. Toxicol. 2017, 68, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebholz, S.L.; Jones, T.; Herrick, R.L.; Xie, C.; Calafat, A.M.; Pinney, S.M.; Woollett, L.A. Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice. Toxicol. Rep. 2016, 3, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Campos-Silva, P.; Furriel, A.; Costa, W.S.; Sampaio, F.J.; Gregorio, B.M. Metabolic and testicular effects of the long-term administration of different high-fat diets in adult rats. Int. Braz. J. Urol. 2015, 41, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Schagdarsurengin, U.; Western, P.; Steger, K.; Meinhardt, A. Developmental origins of male subfertility: Role of infection, inflammation, and environmental factors. Semin. Immunopathol. 2016, 38, 765–781. [Google Scholar] [CrossRef]
- Campos-Silva, P.; Costa, W.S.; Sampaio, F.J.B.; Gregorio, B.M. Prenatal and/or postnatal high-fat diet alters testicular parameters in adult Wistar Albino rats. Histol. Histopathol. 2018, 33, 407–416. [Google Scholar]
- Ghosh, S.; Mukherjee, S. Testicular germ cell apoptosis and sperm defects in mice upon long-term high fat diet feeding. J. Cell Physiol. 2018, 233, 6896–6909. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Yi, S.J.; Zhu, H.L.; Xiong, Y.W.; Shi, X.T.; Cao, X.L.; Zhang, C.; Gao, L.; Zhao, L.L.; Zhang, J.; et al. Paternal cadmium exposure increases the susceptibility to diet-induced testicular injury and spermatogenic disorders in mouse offspring. Chemosphere 2020, 246, 125776. [Google Scholar] [CrossRef]
- Ye, L.; Su, Z.J.; Ge, R.S. Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules 2011, 16, 9983–10001. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Lin, S.X.; Simard, J.; Labrie, C.; El-Alfy, M.; Pelletier, G.; Bélanger, A. Intracrinology: Role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J. Mol. Endocrinol. 2000, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhang, H.; Gao, J.; Li, Z.; Bao, S.; Chen, X.; Wang, Y.; Ge, R.; Ye, L. Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. Environ. Pollut. 2019, 250, 206–215. [Google Scholar] [CrossRef]
- Hagenäs, L.; Ritzén, E.M.; Ploöen, L.; Hansson, V.; French, F.S.; Nayfeh, S.N. Sertoli cell origin of testicular androgen-binding protein (ABP). Mol. Cell Endocrinol. 1975, 2, 339–350. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, H.; Xiao, X.; Lui, W.Y.; Lee, W.M.; Mruk, D.D.; Cheng, C.Y. Perfluorooctanesulfonate (PFOS)-induced Sertoli cell injury through a disruption of F-actin and microtubule organization is mediated by Akt1/2. Sci. Rep. 2017, 7, 1110. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, J.; Guo, X.; Yan, S.; Dai, J. Perfluorooctanoic acid affects endocytosis involving clathrin light chain A and microRNA-133b-3p in mouse testes. Toxicol. Appl. Pharm. 2017, 318, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Irudayaraj, J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem. Toxicol. 2020, 141, 111358. [Google Scholar] [CrossRef] [PubMed]
- Pierozan, P.; Cattani, D.; Karlsson, O. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) induce epigenetic alterations and promote human breast cell carcinogenesis in vitro. Arch. Toxicol. 2020, 94, 3893–3906. [Google Scholar] [CrossRef]
- Rashid, F.; Ramakrishnan, A.; Fields, C.; Irudayaraj, J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol. Rep. 2020, 7, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jia, G. Methylation modifications in eukaryotic messenger RNA. J. Genet. Genom. 2014, 41, 21–33. [Google Scholar] [CrossRef]
- Mahmoud, H. Concise review: Spermatogenesis in an artificial three-dimensional system. Stem Cells 2012, 30, 2355–2360. [Google Scholar] [CrossRef] [PubMed]
- Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [Google Scholar] [CrossRef]
- Chiu, W.A.; Guyton, K.Z.; Martin, M.T.; Reif, D.M.; Rusyn, I. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. ALTEX 2018, 35, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Mo, J.; Wang, Y.; Ni, C.; Li, X.; Zhu, Q.; Ge, R.S. Endocrine disruptors of inhibiting testicular 3β-hydroxysteroid dehydrogenase. Chem. Biol. Interact. 2019, 303, 90–97. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, G.X.; Chu, Y.; Jin, X.; Gong, S.; Akingbemi, B.T.; Zhang, Z.; Zirkin, B.R.; Ge, R.S. Inhibition of human and rat 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 activities by perfluoroalkylated substances. Chem. Biol. Interact. 2010, 188, 38–43. [Google Scholar] [CrossRef] [PubMed]
Author | Species (Age) | Exposure | Dose | Outcome Measures | Serum Concentration |
---|---|---|---|---|---|
Iwabushi et al., 2017 [83] | Male Wistar rats (6–7 weeks) | Mixture of PFAS (perfluorohexanoic acid, PFOA, PFOS, perfluorononanoic acid) | 1, 5, and 25 μg/L in drinking water daily for 1 month and 3 months | Hormone levels not examined. Testis not examined. Epididymal sperm counts not done. | 1-month exposure PFOA: ~6.5–160 µg/kg serum volume 3-month exposure PFOA: ~8.9–184 µg/kg serum volume |
Biegel et al., 1995 [29] | Male CD rats (11–12 weeks) | Ammonium PFOA (APFO) | 25 mg/kg/day APFO for 14 days. | Inhibits testosterone release from Leydig cells. Testis not examined. | Not determined |
Butenhoff et al., 2004 [119] | Male and female Sprague Dawley rats (6-weeks) and F1 pups at Post-natal Day (PND) 21 | Ammonium PFOA (APFO) | 1, 3, 10, or 30 mg/kg/day daily by gavage. | Fertility and all sperm parameters normal in all generations. | Not determined |
Cui et al., 2009 [84] | Male Sprague Dawley rats (8-weeks) | PFOA | 5 or 20 mg/kg/day daily for 28 days by gavage | No distinct pathological change in testes. | Whole blood 39.2 μg/mL (5 mg/kg/day); 58.8 μg/mL (20 mg/kg/day) Testicle 16.7 μg/mL (5 mg/kg/day); 16.8 μg/mL (20 mg/kg/day) |
York et al., 2010 [118] | Male and female Sprague Dawley rats (6-weeks) and F1 pups at PND21 | Ammonium PFOA (APFO) | 0, 1, 3, 10, or 30 mg/kg/day daily by gavage. | Fertility and all sperm parameters normal in all generations. | Not determined |
Author | Species (Age) | Exposure | Dose | Outcome Measures | Serum Concentration |
---|---|---|---|---|---|
Zhang et al., 2014 [111] | Male BALB/c mice (6–8 weeks) | PFOA | 0.31, 1.25, 5, and 20 mg/kg/day daily for 28 days by gavage. | Reduced testosterone and progesterone in testis. Disruption of spermatogenesis in 5 and 20 mg/kg/d groups. Reduced epididymal sperm count (only 5 mg/kg/d group tested). | Testicle 5.37 μg/g (5 mg/kg/d group) and 8.06 μg/g (20 mg/kg/d group) |
Liu et al., 2015 [124] | Male Kunming mice (8 weeks) | PFOA | 2.5, 5, or 10 mg/kg/day daily for 14 days. | Disruption of spermatogenesis. Reduced epididymal sperm count (dose-dependent effects at all doses). Decreased expression of NRF2 (Nuclear Factor, Erythroid 2 Like 2). Inhibition of antioxidant enzymes superoxide dismutase and catalase. Upregulation of p-p53 and BAX (BCL2 Associated X, Apoptosis Regulator) expression and downregulation of BCL-2 (B-Cell CLL/Lymphoma 2) expression in testis. | Not determined |
Lu et al., 2016 [125] | Male BABL/c mice (6–8 weeks) | PFOA | 1.25, 5, or 20 mg/kg/day daily for 28 days by gavage. | Disruption of blood–testes barrier and immune privilege observed in all three PFOA groups. | Not determined |
Song et al., 2018 [115] | Female pregnant mice | PFOA | 1, 2.5, or 5 mg/kg/day daily by gavage | Reduced level of testosterone in male offspring on PND 21. Dose-dependent damage to testis. Number of Leydig cells decreased in 2.5 and 5 mg/kg PFOA groups on PND 21 and 70. | Not determined |
Author | Species (Age) | Exposure | Dose | Outcome Measures | Serum Concentration |
---|---|---|---|---|---|
Iwabushi et al., 2017 [83] | Male Wistar rats (6–7 weeks) | Mixture of PFAS (C6A, PFOA, PFOS, C9A) | 1, 5, and 25 μg/L in drinking water daily for 1 month and 3 months | Hormone levels not examined. Testis not examined. Epididymal sperm counts not done. | 1-month exposure PFOS: 1.09–17.2 µg/kg serum volume 3-month exposure PFOS: 2.7–73.7 µg/kg serum volume |
Cui et al., 2009 [84] | Male Sprague Dawley rats (8 weeks) | PFOS | 5 or 20 mg/kg/day daily for 28 days by gavage | No distinct pathological change in testes | Whole blood 72.0 μg/mL (5 mg/kg/day); not determined (20 mg/kg/day), all died within 26 days exposure. Testicle 39.5 μg/mL (5 mg/kg/day); 127 μg/mL (5 mg/kg/day) |
López-Doval et al., 2014 [114] | Male Sprague Dawley rats (8 weeks) | PFOS | 0.5; 1.0; 3.0; and 6.0 mg/kg/day for 28 days by gavage | Circulating levels of LH and testosterone decrease and FSH increase. Disrupts male reproductive axis activity. | Not determined |
Zhao et al., 2014 [32] | Female pregnant Sprague-Dawley rats | PFOS | 5, 20 mg/kg/day from gestational day 11–19 by gavage. | Male F1 generation examined at gestational day 20. Decreased testosterone, impaired fetal Leydig cells with reduced number. Decreased expression of genes expressed by Leydig cells including Cyp11A1 and decreased cholesterol levels. | Not determined |
López-Doval et al., 2016 [122] | Male Sprague Dawley rats (8 weeks) | PFOS | 1.0; 3.0; and 6.0 mg/kg/d daily for 28 days by gavage | PFOS inhibits both gene and protein expression of FSH receptor and AR at testicular level. Testis not examined. | Not determined |
Li et al., 2018 [113] | Male Sprague Dawley rats (PND35) | PFOS | 5 or 10 mg/kg/day starting PND 35 for 21 days by gavage | Lowered serum testosterone levels, decreased expression of genes expressed by Leydig cells (Lhcgr (LH/choriogonadotropin receptor), Cyp11a1, and Cyp17a1). | Not determined |
Li et al., 2018 [113] | Male Sprague Dawley rats (4 weeks) | PFOS | 5 or 10 mg/kg/day starting on PND 35 for 21 days by gavage | 5–10 mg/kg/d reduced epididymal sperm count and serum testosterone levels. Promoted immature Leydig cell apoptosis. 10 mg/kg/d disrupted Leydig cell specific gene expression (LHCGR, CYP11A1, and CYP17A1). Delayed Leydig cell development during puberty. | Not determined |
Zhang et al., 2020 [93] | Female pregnant Sprague-Dawley rats | PFOS | 1 or 5 mg/kg/day from gestational day 5–20 by gavage. | Male F1 generation examined at PND1, 35, 90. Decreased serum testosterone levels. Decreased levels of Scarb1 (Scavenger receptor class B type 1), Cyp11a1, Cyp17a1, and Hsd17b3, Dhh (Desert hedgehog homolog), and Sox9 (SRY-related HMG-box). Inhibition of Leydig cell proliferation. | Not determined |
Luebker et al., 2005 [120,126] | Male-female Sprague Dawley rats (6-weeks) and F1 pups | PFOS | 0.1, 0.4, 1.6, and 3.2 mg/kg/day throughout the 2-generational study | Fertility and all sperm parameters normal in all generations. Developmental mortality observed for 1.6 and 3.2 mg/kg/day groups. | Not determined |
Author | Species (Age) | Exposure | Dose | Outcome Measures | Serum Concentration |
---|---|---|---|---|---|
Wan et al., 2011 [116] | CD1 male mice (8 weeks) | PFOS | 1, 5, or 10 mg/kg/day for 7, 14, or 21 days by gavage. | For 10 mg/kg/d, day21: Serum testosterone levels decreased. Epididymal sperm counts decreased. mRNA expression levels of steroidogenic enzymes (i.e., StAR, CYP11A1, CYP17A1, 3beta-HSD, and 17beta-HSD) were reduced. | Not determined |
Qiu et al., 2013 [127] | Male ICR mice (8 weeks) | PFOS | 0.25, 2.5, 25, and 50 mg/kg/day for 28 days by gavage. | For ≥ 2.5mg/kg/day: Significant dose-dependent decrease in sperm count. Significant increase in Sertoli cell vacuolization and disruption of spermatogenesis, significant loss in blood–testis barrier. | Not determined |
Qiu et al., 2016 [128] | Male ICR mice (8 weeks) | PFOS | 0.5, 5, and 10 mg/kg/bw daily for 4 weeks by gavage | Dose-dependent decrease in sperm count. Loss in blood–testis barrier at dose of 5 mg/kg/bw and higher | Not determined |
Qu et al., 2016 [121] | Male C57 mice (6–8 weeks) | PFOS | 0.5 and 10 mg/kg/day for 5 weeks by gavage | Serum testosterone levels decreased. Higher incidence of apoptotic cells, and vacuolations observed in spermatogonia, spermatocytes, and Leydig cells for 10 mg/kg/day group. | Not determined |
Lai et al., 2017 [112] | Female pregnant CD-1 mice (6−8 weeks) | PFOS | 0.3 or 3 mg/kg/day | On PND1, aberration of lipid metabolism, oxidative stress and cell-junction signaling, perturbations of lipid mediators. On PND63 reduction in serum testosterone and epididymal sperm count | PFOS in PND1 testis: ~0.6 µg/g (0.3 mg/kg/d group), ~3.8 µg/g (3 mg/kg/d group) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarapore, P.; Ouyang, B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? Int. J. Environ. Res. Public Health 2021, 18, 3794. https://doi.org/10.3390/ijerph18073794
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? International Journal of Environmental Research and Public Health. 2021; 18(7):3794. https://doi.org/10.3390/ijerph18073794
Chicago/Turabian StyleTarapore, Pheruza, and Bin Ouyang. 2021. "Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility?" International Journal of Environmental Research and Public Health 18, no. 7: 3794. https://doi.org/10.3390/ijerph18073794
APA StyleTarapore, P., & Ouyang, B. (2021). Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? International Journal of Environmental Research and Public Health, 18(7), 3794. https://doi.org/10.3390/ijerph18073794