Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washing Processes
2.2. Analyzes of Chemical Parameters in Water after Washing Process
2.3. Ability to Sorb SARS-CoV-2 Virus Particles
3. Discussion
3.1. The Release of Microfibers during Washing Processes
3.2. The Efficiency of Washing Water to Remove SARS-CoV-2 Virus Particles
3.3. The Efficiency of Sorption of Virus Particles on the Surface of Microfibers
3.4. The Sorption of SARS-CoV-2 on Microplastic Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation, and treatment of coronavirus (COVID-19). Updated 17 July 2021; In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- World Health Organization. 8 July 2021. Available online: https://www.who.int/health-topics/coronavirus (accessed on 22 November 2021).
- Buonerba, A.; Corpuz, M.V.A.; Ballesteros, F.; Choo, K.-H.; Hasan, S.W.; Korshin, G.V.; Belgiorno, V.; Barceló, D.; Naddeo, V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. J. Hazard. Mater. 2021, 415, 125580. [Google Scholar] [CrossRef]
- KaKaur, A.; Bhalla, V.; Salahuddin, M.; Rahman, S.O.; Pottoo, F.H. COVID-19 infection: Epidemiology, Virology, Clinical Features, Diagnosis and Pharmacological Treatment. Curr. Pharm. Des. 2021, 27, 1–17. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, M.; Zheng, X.; Li, C.; He, J.; Hong, Z.; Huang, S.; Zhang, Z.; Lin, X.; Fang, Z.; et al. Evidence for gastrointestinal infection of SARS-CoV. Gastroenterology 2020, 158, 1831–1833. [Google Scholar] [CrossRef]
- Yeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020, 5, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 in sewage. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, H.; Yang, Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ. Sci. Technol. 2020, 54, 3733–3735. [Google Scholar] [CrossRef]
- Manoli, K.; Maffettone, R.; Sharma, V.K.; Santoro, D.; Ray, A.K.; Passalacqua, K.D.; Carnahan, K.E.; Wobus, C.E.; Sarathy, S. Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater. Environ. Sci. Technol. 2020, 54, 1878–1888. [Google Scholar] [CrossRef]
- Jing, J.L.J.; Yi, T.P.; Bose, R.J.C.; McCarthy, J.R.; Tharmalingam, N.; Madheswaran, T. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int. J. Environ. Res. Public Health 2020, 17, 3326. [Google Scholar] [CrossRef]
- Kampf, G. Efficacy of ethanol against viruses in hand disinfection. J. Hosp. Infect. 2018, 98, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Lodder, W.; Husman, A.M.D.R. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef]
- Rajiva, R.; Chatterjee, K.; Basavaraj, T.; Singh, P.; Mehta, A.; Orkeh, G.O. Sanitization of public places in Covid19 era: A comparison of Indian and American municipal practices. Int. J. Sci. Res. 2021, 10, 60–63. [Google Scholar] [CrossRef]
- Wang, W.-K.; Chen, S.-Y.; Liu, I.-J.; Chen, Y.-C.; Chen, H.-L.; Yang, C.-F.; Chen, P.-J.; Yeh, S.-H.; Kao, C.-L.; Huang, L.-M.; et al. Detection of SARS-associated Coronavirus in Throat Wash and Saliva in Early Diagnosis. Emerg. Infect. Dis. 2004, 10, 1213–1219. [Google Scholar] [CrossRef]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, T.; Mitrano, D.M.; Heuberger, M.; Hufenus, R.; Nowack, B. Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environ. Sci. Technol. 2020, 54, 4847–4855. [Google Scholar] [CrossRef]
- Gaylarde, C.; Baptista-Neto, J.A.; da Fonseca, E.M. Plastic microfibre pollution: How important is clothes’ laundering? Heliyon 2021, 7, e07105. [Google Scholar] [CrossRef]
- Kärkkäinen, N.; Sillanpää, M. Quantification of different microplastic fibres discharged from textiles in machine wash and tumble drying. Environ. Sci. Pollut. Res. 2021, 28, 16253–16263. [Google Scholar] [CrossRef]
- Joo, S.H.; Liang, Y.; Kim, M.; Byun, J.; Choi, H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environ. Challenges 2021, 3, 100042. [Google Scholar] [CrossRef]
- Zhang, C.M.; Xu, L.M.; Xu, P.C.; Wang, X.C. Elimination of viruses from domestic wastewater: Requirements and Technologies. World J. Microbiol. Biotechnol. 2016, 32, 69. [Google Scholar] [CrossRef]
- Richter, Ł.; Księżarczyk, K.; Paszkowska, K.; Janczuk-Richter, M.; Niedziółka-Jönsson, J.; Gapiński, J.; Łoś, M.; Hołyst, R.; Paczesny, J. Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Janíková, M.; Hodosy, J.; Boor, P.; Klempa, B.; Celec, P. Loop-mediated isothermal amplification for the detection of SARS-CoV-2 in saliva. Microb. Biotechnol. 2021, 14, 307–316. [Google Scholar] [CrossRef]
- Scheller, C.; Krebs, F.; Minkner, R.; Astner, I.; Gil-Moles, M.; Wätzig, H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020, 41, 1137–1151. [Google Scholar] [CrossRef]
- Heinrich, P.; Braunbeck, T. Bioavailability of microplastic-bound pollutants in vitro: The role of adsorbate lipophilicity and surfactants. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 221, 59–67. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Costa, N.D.S.X.; Dantas, K.C.; Galvão, L.D.S.; Moralles, F.N.; Lombardi, S.C.F.S.; Júnior, A.M.; Lindoso, J.A.L.; Ando, R.A.; Lima, F.G.; et al. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. Environ. Pollut. 2022, 292 Pt A, 118299. [Google Scholar] [CrossRef]
- Abuwatfa, W.H.; Al-Muqbel, D.; Al-Othman, A.; Halalsheh, N.; Tawalbeh, M. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review. Case Stud. Chem. Environ. Eng. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Bibby, K.; Peccia, J. Identification of Viral Pathogen Diversity in Sewage Sludge by Metagenome Analysis. Environ. Sci. Technol. 2013, 47, 1945–1951. [Google Scholar] [CrossRef] [Green Version]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167. [Google Scholar] [CrossRef]
- Nakao, S.; Akita, K.; Ozaki, A.; Masumoto, K.; Okuda, T. Circulation of fibrous microplastic (microfiber) in sewage and sewage sludge treatment processes. Sci. Total Environ. 2021, 795, 148873. [Google Scholar] [CrossRef]
- Alvim, C.B.; Bes-Piá, M.; Mendoza-Roca, J.-A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chem. Eng. J. 2020, 402, 126293. [Google Scholar] [CrossRef]
Washing Water | Concentration of Microfibers in Sample | Number of Copies of Virus Particles per Liter of Water | Sorption Efficiency | pH | NH3+ | PO43− | Ca2+ | Mg2+ | N-NO3 | COD |
---|---|---|---|---|---|---|---|---|---|---|
mg/L | Copy/L | % | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
Start | 160 | 13,170,000 | - | |||||||
Tap water without microfibers | - | - | 0 | 7.33 | 0 | 0 | 71.8 | 17.2 | 12.76 | 0.74 |
Washing water with microfibers | 160 | 8,015,000 | 39 | 7.90 | 0.41 | 1.30 | 78.70 | 17.50 | 2.07 | 204 |
Washing water with liquid powder | 160 | 2,340,000 | 82 | 7.11 | 0.91 | 29 | 74.60 | 18.30 | 12.20 | 4958 |
Washing water with liquid powder and washing soda | 160 | 0 | >99 | 9.95 | 0.57 | 18.80 | 73.20 | 20.40 | 3.63 | 3742 |
Microfibers | Concentration of Microfibers in Washing Water after Washing Processes [g/L] | Number of Copies of Virus Particles per Liter of Water [Copy/L] | Sorption Efficiency [%] |
---|---|---|---|
Start | 15,246,000 | - | |
Before washing | 7,763,000 | 49 | |
Washing water | 1.6170 | 3,794,000 | 75 |
Washing water with liquid powder | 0.8910 | 3,433,000 | 77 |
Washing water with liquid powder and washing soda | 2.2470 | 1,731,000 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belišová, N.; Konečná, B.; Bachratá, N.; Ryba, J.; Potočárová, A.; Tamáš, M.; Phuong, A.L.; Púček, O.; Kopáček, J.; Mackul’ak, T. Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes. Int. J. Environ. Res. Public Health 2022, 19, 281. https://doi.org/10.3390/ijerph19010281
Belišová N, Konečná B, Bachratá N, Ryba J, Potočárová A, Tamáš M, Phuong AL, Púček O, Kopáček J, Mackul’ak T. Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes. International Journal of Environmental Research and Public Health. 2022; 19(1):281. https://doi.org/10.3390/ijerph19010281
Chicago/Turabian StyleBelišová, Noemi, Barbora Konečná, Nikoleta Bachratá, Jozef Ryba, Alena Potočárová, Michal Tamáš, Anh Le Phuong, Ondrej Púček, Juraj Kopáček, and Tomáš Mackul’ak. 2022. "Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes" International Journal of Environmental Research and Public Health 19, no. 1: 281. https://doi.org/10.3390/ijerph19010281
APA StyleBelišová, N., Konečná, B., Bachratá, N., Ryba, J., Potočárová, A., Tamáš, M., Phuong, A. L., Púček, O., Kopáček, J., & Mackul’ak, T. (2022). Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes. International Journal of Environmental Research and Public Health, 19(1), 281. https://doi.org/10.3390/ijerph19010281