Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Study Coding and Data Extraction
2.4. Study Quality
2.5. Statistical Analyses
3. Results
3.1. Study Characteristics
3.2. Between-Group Effects
3.3. Within-Group Effects
3.4. Single Training Factor Analyses
4. Discussion
4.1. Primary Analysis
4.2. Single Training Factor Analysis
4.3. Future Research Perspectives
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Reis, V.P.; Abad, C.C.C.; Freitas, T.T.; Azevedo, P.; Nimphius, S. Change of Direction Performance in Elite Players from Different Team Sports. J. Strength Cond. Res. 2022, 36, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, K.W.; Askew, C.D.; Sayers, M.G. Effective attacking strategies in rugby union. Eur. J. Sport Sci. 2010, 10, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Negra, Y.; Capranica, L.; Bouguezzi, R.; Hachana, Y.; Rouahi, M.A.; Mkaouer, B. Validity and Reliability of a New Test of Planned Agility in Elite Taekwondo Athletes. J. Strength Cond. Res. 2018, 32, 2542–2547. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fernandez, J.; Ulbricht, A.; Ferrauti, A. Fitness testing of tennis players: How valuable is it? Br. J. Sports Med. 2014, 48 (Suppl. S1), i22–i31. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sports Sci. Med. 2007, 6, 63. [Google Scholar]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Hachana, Y.; Chaabene, H.; Ben Rajeb, G.; Khlifa, R.; Aouadi, R.; Chamari, K.; Gabbett, T.J. Validity and reliability of new agility test among elite and subelite under 14-soccer players. PLoS ONE 2014, 9, e95773. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, V.; White, J.; Georgiou, A.; Iga, J.; Drust, B. Talent identification in youth soccer. J. Sports Sci. 2012, 30, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Moran, J.; Negra, Y.; Attia, A.; Granacher, U. Effects of Resistance Training on Change-of-Direction Speed in Youth and Young Physically Active and Athletic Adults: A Systematic Review with Meta-Analysis. Sports Med. 2020, 50, 1483–1499. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.; Clarke, C.V.; An, R. Effect of eccentric overload training on change of direction speed performance: A systematic review and meta-analysis. J. Sports Sci. 2020, 38, 2579–2587. [Google Scholar] [CrossRef]
- Raya-González, J.; Prat-Luri, A.; López-Valenciano, A.; Sabido, R.; Hernández-Davó, J.L. Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. J. Hum. Kinet. 2021, 77, 191–204. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.; Scharhag, J. Athlete: A working definition for medical and health sciences research. Scand. J. Med. Sci. Sports 2016, 26, 4–7. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, F.A.; Gamble, P.; Gill, N.D.; McGuigan, M.R. Effects of a six-week strength training programme on change of direction performance in youth team sport athletes. Sports 2017, 5, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of in-season enhanced negative work-based vs. traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36, 241. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial eccentric-overload training in young soccer players: Effects on strength, sprint, change of direction, agility and soccer shooting precision. J. Sports Sci. Med. 2020, 19, 213. [Google Scholar]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanović, M.D.; Mikić, M.; Drid, P.; Calleja-González, J.; Maksimović, N.; Belegišanin, B.; Sekulović, V. Greater Power but Not Strength Gains Using Flywheel Versus Equivolumed Traditional Strength Training in Junior Basketball Players. Int. J. Environ. Res. Public Health 2021, 18, 1181. [Google Scholar] [CrossRef] [PubMed]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beato, M.; Gonzalo-Skok, O.; Romero-Rodríguez, D. Effects of 8 weeks of isoinertial vs. cable-resistance training on motor skills performance and interlimb asymmetries. J. Strength Cond. Res. 2022, 36, 1200–1208. [Google Scholar] [CrossRef]
- Fousekis, A.; Fousekis, K.; Fousekis, G.; Manou, V.; Michailidis, Y.; Zelenitsas, C.; Metaxas, T. The effects of free weights and iso-inertial resistance during semi-squatting exercise on amateur soccer players’ physical performance indicators: A randomized controlled study. J. Sports Med. Phys. Fit. 2021, 62, 609–617. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Moseley, A.M.; Rahman, P.; Wells, G.A.; Zadro, J.R.; Sherrington, C.; Toupin-April, K.; Brosseau, L. Agreement between the Cochrane risk of bias tool and Physiotherapy Evidence Database (PEDro) scale: A meta-epidemiological study of randomized controlled trials of physical therapy interventions. PLoS ONE 2019, 14, e0222770. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Durlak, J.A. How to select, calculate, and interpret effect sizes. J. Pediatric Psychol. 2009, 34, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behaviors Science, 2nd ed.; Laurence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ Br. Med. J. 2003, 327, 557. [Google Scholar] [CrossRef] [Green Version]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Analysing data and undertaking meta-analyses. Cochrane Handb. Syst. Rev. Interv. Cochrane Book Ser. 2008, 243–296. [Google Scholar]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload During Flywheel Resistance Exercise in Women and Men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables During the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training-Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated eccentric loading for training and performance: A review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Moran, J.; Prieske, O.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U. Effects of an Eccentric Hamstrings Training on Components of Physical Performance in Young Female Handball Players. Int. J. Sports Physiol. Perform. 2019, 1–22. [Google Scholar] [CrossRef] [PubMed]
- de Hoyo, M.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Del Ojo, J.J.; Gonzalo-Skok, O. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J. Sports Sci. 2016, 34, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int. J. Sports Physiol. Perform. 2016, 11, 66–73. [Google Scholar] [CrossRef]
- Spiteri, T.; Cochrane, J.L.; Hart, N.H.; Haff, G.G.; Nimphius, S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur. J. Sport Sci. 2013, 13, 646–652. [Google Scholar] [CrossRef]
- Tesch, P.A.; Ekberg, A.; Lindquist, D.M.; Trieschmann, J.T. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol. Scand. 2004, 180, 89–98. [Google Scholar] [CrossRef]
- Norrbrand, L.; Tous-Fajardo, J.; Vargas, R.; Tesch, P.A. Quadriceps muscle use in the flywheel and barbell squat. Aviat. Space Environ. Med. 2011, 82, 13–19. [Google Scholar] [CrossRef]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of Inertial Training on Strength and Power Performance in Young Active Men. J. Strength Cond. Res. 2016, 30, 2107–2113. [Google Scholar] [CrossRef]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; de Paz, J.A. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur. J. Appl. Physiolgy 2014, 114, 1075–1084. [Google Scholar] [CrossRef]
- Berg, H.E.; Tesch, A. A gravity-independent ergometer to be used for resistance training in space. Aviat. Space Environ. Med. 1994, 65, 752–756. [Google Scholar]
- Romero-Rodriguez, D.; Gual, G.; Tesch, P.A. Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: A case-series study. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2011, 12, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Naylor, J.; Greig, M. A hierarchical model of factors influencing a battery of agility tests. J. Sports Med. Phys. Fit. 2015, 55, 1329–1335. [Google Scholar]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Jones, P.A.; Bampouras, T.; Marrin, K. An investigation into the physical determinants of change of direction speed. J. Sports Med. Phys. Fit. 2009, 49, 97–104. [Google Scholar]
- Kovacs, M.S.; Roetert, E.P.; Ellenbecker, T.S. Efficient deceleration: The forgotten factor in tennis-specific training. Strength Cond. J. 2008, 30, 58–69. [Google Scholar] [CrossRef]
- Jones, P.A.; Thomas, C.; Dos’Santos, T.; McMahon, J.J.; Graham-Smith, P. The Role of Eccentric Strength in 180 degrees Turns in Female Soccer Players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.; Newton, R.; McGuigan, M. The Effect of Accentuated Eccentric Load on Jump Kinetics in High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2007, 2, 267–273. [Google Scholar] [CrossRef]
- Jones, P.A.; Dos’ Santos, T.; McMahon, J.J.; Graham-Smith, P. Contribution of eccentric strength to cutting performance in female soccer players. J. Strength Cond. Res. 2022, 36, 525–533. [Google Scholar] [CrossRef]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Roig, M.; O’Brien, K.; Kirk, G.; Murray, R.; McKinnon, P.; Shadgan, B.; Reid, W. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br. J. Sports Med. 2009, 43, 556–568. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Hammami, M.; Amara, S.; Sammoud, S.; Mkaouer, B.; Hachana, Y. Agility in Young Athletes: Is It a Different Ability from Speed and Power? J. Strength Cond. Res. 2017, 31, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Canós, J.; Corbi, F.; Colomar, J.; Cirer-Sastre, R.; Baiget, E. Effects of isoinertial or machine-based strength training on performance in tennis players. Biol. Sport 2022, 39, 505–513. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, W.; Rayner, R.; Talpey, S. It’s Time to Change Direction on Agility Research: A Call to Action. Sports Med. Open 2021, 7, 12. [Google Scholar] [CrossRef]
- Altmann, S.; Neumann, R.; Härtel, S.; Kurz, G.; Stein, T.; Woll, A. Agility testing in amateur soccer: A pilot study of selected physical and perceptual-cognitive contributions. PLoS ONE 2021, 16, e0253819. [Google Scholar] [CrossRef] [PubMed]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Youth and young male athletes * | Studies recruiting individuals with adverse health status (e.g., diabetes) |
Intervention | Flywheel inertial resistance training (e.g., isoinertial exercises using flywheel) | Absence of resistance training using flywheel |
Comparator | Traditional strength training program (i.e., strength exercises soliciting concentric/eccentric muscle actions) | Absence of a traditional strength training group |
Outcome | Measures of CoD performance (e.g., T-test time, Illinois test time) | Measures of linear speed, lack of baseline and/or follow-up data |
Study design | Randomized controlled trials or randomized cross-over trials | Quasi-experimental study design |
Study (Design) | Group | N | Age (Years) | Training Expertise | Body Mass (kg) | Body Height (m) | Description | Training Duration (Weeks) | Frequency (Session/Week) | Session Duration (min) | Volume | Intensity | Total Number of Training Sessions | CoD Protocol |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bourgeois, et al. [22] (Randomized cross-over trial) | FRT | 12 | 15.0 ± 0.9 | High school athletes | 80.2 ± 15.3 | 1.8 ± 0.1 | Upper and lower body isoinertial resistance exercises (3 s eccentric duration followed by concentric action “as fast as possible”) | 6 | 3/wk | 60 | 3 sets, 6–10 reps | NR | 16 | CoD 180° and 45°; modified 505 CoD test |
TRT | 6 (former FRT) | 15.3 ± 0.5 | High school athletes | 81.8 ± 12.4 | 1.8 ± 0.1 | Upper and lower body isoinertial resistance exercises (no constraints on tempo) | 6 | 3/wk | 60 | 3 sets, 6–10 reps | NR | 17 | CoD 180° and 45°; modified 505 CoD test | |
Coratella, Beato, Cè, Scurati, Milanese, Schena, and Esposito [23] (RCT) | FRT | 20 | 23 ± 4 | Athletes | 77 ± 5 | 1.80 ± 0.11 | Squat using flywheel | 8 | 1/wk | 20 | 4–6 sets, 8 reps | flywheel squats inertia: 0.11 kg·m−2 | 8 | T-test; 20 + 20 m shuttle test |
TRT (Weight training) | 20 | 23 ± 4 | Athletes | 77 ± 5 | 1.80 ± 0.11 | Squat using barbells | 8 | 1/wk | 20 | 6 sets, 8 reps | 480% 1RM, | 8 | T-test; 20 + 20 m shuttle test | |
Fiorilli, Mariano, Iuliano, Giombini, Ciccarelli, Buonsenso, Calcagno, and di Cagno [24] (RCT) | FRT | 18 | 13.21 ± 1.21 | Athletes | 51.25 ± 6.71 | 1.65 ± 0.10 | Lower body isoinertial resistance exercises | 6 | 2/wk | NR | 2 ex, 4 sets, 7 reps | 17 Borg’s Scale | 12 | Y-agility (45°), Illinois CoD test |
TRT/Plyo | 16 | 13.36 ± 0.80 | Athletes | 52.10 ± 5.23 | 1.68 ± 0.07 | Plyometric exercises | 6 | 2/wk | NR | 2 ex, 3–4 sets, 7–10 reps | 17 Borg’s Scale | 12 | Y-agility (45°), Illinois CoD test | |
Maroto- Izquierdo, García-López, and de Paz [25] (RCT) | FRT | 15 | 19.8 ± 1 | Athletes | 82.3 ± 3.3 | 1.86 ± 0.08 | Flywheel resistance training with eccentric overload (leg press) | 6 | 2–3/wk | NR | 4 sets, 7 reps | Maximum-concentric effort | 15 | T-test |
TRT | 14 | 23.8 ± 1.6 | Athletes | 85.6 ± 3.7 | 1.84 ± 0.01 | Weight-stack machine (leg press) | 6 | 2–3/wk | NR | 4 sets, 7 reps | 7RM | 15 | T-test | |
Stojanović, Mikić, Drid, Calleja- González, Maksimović, Belegišanin, and Sekulović [26] (RCT) | FRT | 12 | 17.58 ± 0.52 | Athletes | 75.53 ± 5.43 | 190.54 ± 4.98 | One-arm dumbbell row, rotational Pall of press, biceps curls + upright row complex, half squat on isoinertial device, Romanian deadlift on isoinertial device | 8 | 1–2/wk | NR | 2–4 sets, 8–15 reps | 85% 1RM (except Rotational Pallof press) | 12 | T-test (Semenick) |
TRT | 12 | 17.52 ± 0.58 | Athletes | 78.78 ± 8.01 | 190.58 ± 6.56 | One-arm dumbbell row, rotational Pallof press, biceps curls + upright row complex, half squat with free weights, Romanian feadlift with free weights | 8 | 1–2/wk | NR | 2–4 sets, 8–15 reps | 85% 1RM (except Rotational Pallof press) | 12 | T-test (Semenick) | |
Madruga-Parera, Bishop, Fort-Vanmeerhaeghe, Beato, Gonzalo-Skok, and Romero-Rodríguez [27] (RCT) | FRT | 17 | 15.9 ± 1.4 | Athletes | 70.5± 13.3 | 1.74 ± 0.73 | Isoinertial exercises (CoD drills, handball sport-specific exercises) | 8 | 2 | NR | 3 sets, 8–12 reps | RPE (6–9) | 16 | CoD 180° Test |
TRT | 17 | Athletes | Cable resistance exercises (CoD drills, handball sport-specific exercises) | 8 | 2 | NR | 16 | |||||||
Fousekis, Fousekis, Fousekis, Manou, Michailidis, Zelenitsas, and Metaxas [28] (RCT) | FRT | 11 | 24.0 ± 6.6 | Athletes | 77.0± 4.4 | 1.80 ± 0.42 | Isoinertial training during semi-squatting using flywheel | 6 | 2 | NR | 3–4 sets, 10 reps | NR | 12 | Illinois CoD test |
TRT | 11 | 19.7 ± 2.1 | Athletes | 75.3 ± 3.9 | 1.80 ± 0.50 | Semi-squat using free weights | 6 | 2 | NR | 3–4 sets, 8–10 reps | 75–85% 1RM | 12 |
Study | Eligibility Criteria | Randomized Allocation | Blinded Allocation | Group Homogeneity | Blinded Subjects | Blinded Therapists | Blinded Assessor | Drop Out <15% | Intention-to-Treat Analysis | Between-Group Comparison | Point Estimates and Variability | PEDro Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bourgeois, Gamble, Gill, and McGuigan [22] | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ● | ● | 3 |
Coratella, Beato, Cè, Scurati, Milanese, Schena, and Esposito [23] | ● | ● | ● | ○ | ○ | ○ | ○ | ● | ● | ● | ● | 6 |
Fiorilli, Mariano, Iuliano, Giombini, Ciccarelli, Buonsenso, Calcagno, and di Cagno [24] | ● | ● | ○ | ● | ○ | ○ | ○ | ● | ● | ● | ● | 6 |
Maroto-Izquierdo, García-López and de Paz [25] | ● | ● | ○ | ● | ○ | ○ | ○ | ● | ● | ● | ● | 6 |
Stojanović, Mikić, Drid, Calleja- González, Maksimović, Belegišanin, and Sekulović [26] | ● | ● | ○ | ● | ○ | ○ | ○ | ● | ● | ● | ● | 6 |
Madruga-Parera, Bishop, Fort- Vanmeerhaeghe, Beato, Gonzalo-Skok, and Romero-Rodríguez [27] | ● | ● | ● | ○ | ○ | ○ | ● | ○ | ● | ● | ● | 6 |
Fousekis, Fousekis, Fousekis, Manou, Michailidis, Zelenitsas, and Metaxas [28] | ● | ● | ○ | ● | ○ | ○ | ● | ○ | ● | ● | ● | 6 |
Subgroup | Nb Studies (Nb Exp) | Estimated Effect Size Mean (95%, CI) | Within-Subgroup p | Between-Subgroup p | Within Group I2 |
---|---|---|---|---|---|
Flywheel resistance training | |||||
Training duration | |||||
6 weeks | 4(5) | 2.05 [−0.61 to 4.71] | p > 0.05 | p = 0.414 | 90% |
8 weeks | 3(4) | 1.15 [−0.50 to 2.82] | p > 0.05 | 81% | |
Training frequency | |||||
≤2 sessions/week | 5(6) | 1.33 [0.32 to 2.35] | p < 0.05 | p = 0.564 | 80% |
>2 sessions/week | 2(3) | 2.35 [−5.04 to 9.94] | p > 0.05 | 94% | |
Total number of training sessions | |||||
≤12 sessions | 4(4) | 1.83 [0.60 to 3.06] | p < 0.05 | p = 0.774 | 63% |
>12 sessions | 3(5) | 1.52 [−1.36 to 4.39] | p > 0.05 | 90% | |
Traditional resistance training | |||||
Training duration | |||||
6 weeks | 4(5) | 0.65 [−0.67; 1.98] | p > 0.05 | p = 0.855 | 77% |
8 weeks | 3(4) | 0.55 [−0.34; 1.45] | p > 0.05 | 50% | |
Training frequency | |||||
≤2 sessions/week | 5(6) | 0.43 [−0.01; 0.87] | p > 0.05 | p = 0.554 | 25% |
>2 sessions/week | 2(3) | 0.95 [−2.60; 4.51] | p > 0.05 | 85% | |
Total number of training sessions | |||||
≤12 sessions | 4(4) | 0.55 [−0.41; 1.52] | p > 0.05 | p = 0.821 | 52% |
>12 sessions | 3(5) | 0.67 [−0.62; 1.97] | p > 0.05 | 76% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaabene, H.; Markov, A.; Prieske, O.; Moran, J.; Behrens, M.; Negra, Y.; Ramirez-Campillo, R.; Koch, U.; Mkaouer, B. Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 7061. https://doi.org/10.3390/ijerph19127061
Chaabene H, Markov A, Prieske O, Moran J, Behrens M, Negra Y, Ramirez-Campillo R, Koch U, Mkaouer B. Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(12):7061. https://doi.org/10.3390/ijerph19127061
Chicago/Turabian StyleChaabene, Helmi, Adrian Markov, Olaf Prieske, Jason Moran, Martin Behrens, Yassine Negra, Rodrigo Ramirez-Campillo, Ulrike Koch, and Bessem Mkaouer. 2022. "Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 12: 7061. https://doi.org/10.3390/ijerph19127061
APA StyleChaabene, H., Markov, A., Prieske, O., Moran, J., Behrens, M., Negra, Y., Ramirez-Campillo, R., Koch, U., & Mkaouer, B. (2022). Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 19(12), 7061. https://doi.org/10.3390/ijerph19127061