Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Task
2.3. Apparatus
2.4. EMG
2.5. The AnyBody Modeling System
2.6. Experimental Procedure
2.7. Statistical Analysis
3. Results
3.1. Experimental Assessment (EMG)—Measured Muscle Activity
3.2. Simulation Assessment (AnyBody Software)—Estimated Muscle Activity
4. Discussion
4.1. Comparison of the Effect of Lower-Limb Exoskeleton
4.2. Contribution
4.3. Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3DSSPP | Three-Dimensional Statistical Strength Prediction Program |
AMMR | AnyBody Management Model Repository |
AMS | AnyBody Modeling System |
BB | Biceps brachii |
BF | Biceps femoris |
BF_85 | Back flexion posture: 85 cm |
CAD | Computer-aided design |
CEX | Chairless Exoskeleton |
EMG | Electromyography |
ES | Erector spinae |
KF_60 | Knee flexion posture: 60 cm |
MD | Middle deltoid |
RF | Rectus femoris |
RULA | Rapid Upper Limb Assessment |
TA | Tibialis anterior |
TB | Triceps brachii |
UT | Upper trapezius |
WMSDs | Work-related musculoskeletal disorders |
References
- Kim, K.S.; Park, J.K.; Kim, D.S. Status and characteristics of occurrence of work-related musculoskeletal disorders. J. Ergon. Soc. Korea 2010, 29, 405–422. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.G. Work-related musculoskeletal disorders in Korean farmers. J. Korean Med. Assoc. 2012, 55, 1054–1062. [Google Scholar] [CrossRef]
- Gallagher, S.; Hamrick, C.A. The kyphotic lumbar spine: Issues in the analysis of the stresses in stooped lifting. Int. J. Ind. Ergon. 1991, 8, 33–47. [Google Scholar] [CrossRef]
- Kim, S.R.; Moon, J.S. Risk factors of low back pain of workers. Korean J. Occup. Health Nurs. 1998, 7, 136–142. [Google Scholar]
- Punnett, L.; Wegman, D.H. Work-related musculoskeletal disorders: The epidemiologic evidence and the debate. J. Electromyogr. Kinesiol. 2004, 14, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, K.I.; Jung, J.Y. The effects of 8 week combined exercise program on the biomechanical function recovery of patients suffering from work-related back problems. Korean J. Sport Biomech. 2009, 19, 567–580. [Google Scholar]
- Kivimaki, J.; Riihimaki, H.; Hannien, K. Knee disorders in carpet and floor layers and painters. Scand. J. Work Environ. Health 1992, 18, 310–316. [Google Scholar] [CrossRef]
- Albers, J.T.; Estill, C.F. Simple Solutions: Ergonomics for Construction Workers; National Institute for Occupational Safety and Health: Washington, DC, USA, 2007.
- de Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’Sullivan, L.W. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Toxiri, S.; Naf, M.B.; Lazzaroni, M.; Fernandez, J.; Sposito, M.; Poliero, T.; Monica, L.; Anastasi, S.; Caldwell, D.G.; Ortiz, J. Back-support exoskeletons for occupational use: An overview of technological advances and trends. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Murashov, V.V.; Lowe, B.D.; Lu, M.L. Industrial exoskeletons: Need for intervention effectiveness research. Am. J. Ind. Med. 2020, 63, 201–208. [Google Scholar] [CrossRef]
- Rashedi, E.; Kim, S.; Nussbaum, M.A.; Agnew, M.J. Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics 2014, 57, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Cobb, T.J.; Sebit, R.; Rieger, M.A.; Steinhilber, B. Subjective evaluation of a passive lower-limb industrial exoskeleton used during simulated assembly. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 175–184. [Google Scholar] [CrossRef]
- Kim, S.W.; Nussbaum, M.A.; Esfahani, M.I.M.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I—“Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 2018, 70, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Pillai, M.V.; Van Engelhoven, L.; Kazerooni, H. Evaluation of a lower leg support exoskeleton on floor and below hip height panel work. Hum. Factors 2020, 62, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Han, B.; Du, Z.; Huang, T.; Bai, O.; Peng, A. Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers. Biocybern. Biomed. Eng. 2021, 41, 221–238. [Google Scholar] [CrossRef]
- Panariello, D.; Grazioso, S.; Caporaso, T.; Palomba, A.; Di Gironimo, G.; Lanzotti, A. Evaluation of human joint angles in industrial tasks using OpenSim. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 4–6 June 2019; pp. 78–83. [Google Scholar]
- Zhou, J.; Wiggermann, N. Physical stresses on caregivers when pulling patients up in bed: Effect of repositioning aids and patient weight. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 1057–1061. [Google Scholar] [CrossRef]
- Kong, Y.K.; Choi, K.H.; Park, C.W.; Kim, S.Y.; Kim, M.J.; Cho, M.U. Revision of AWBA (Agricultural Whole-Body Assessment) considering workload and comparison with existing assessment tools. J. Ergon. Soc. Korea 2020, 39, 511–528. [Google Scholar] [CrossRef]
- Smith, A.J.J.; Fournier, B.N.; Nantel, J.; Lemaire, E.D. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches. J. Biomech. 2020, 107, 109835. [Google Scholar] [CrossRef]
- Wagner, D.W.; Reed, M.P.; Rasmussen, J. Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling tasks using the AnyBody Modeling System. SAE Trans. 2007, 116, 2092–2101. [Google Scholar]
- Damsgaard, M.; Rasmussen, J.; Christensen, S.T.; Surma, E.; de Zee, M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 2006, 14, 1100–1111. [Google Scholar] [CrossRef]
- Size Korea, 7th Korea Human Body Dimension Survey Project. Available online: https://sizekorea.kr/measurement-data/body (accessed on 21 June 2021).
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl. Eron. 2018, 68, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, S.; Piedrabuena, A.; Iordanov, D.; Martinez-Iranzo, U.; Belda-Lois, J.M. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Appl. Eron. 2020, 87, 103120. [Google Scholar] [CrossRef]
- Kong, Y.K.; Park, C.W.; Cho, M.U.; Kim, S.Y.; Kim, M.J.; Hyun, D.J.; Bae, K.; Choi, J.K.; Ko, S.M.; Choi, K.H. Guidelines for working heights of the lower-limb exoskeleton (CEX) based on ergonomic evaluations. Int. J. Environ. Res. Public Health 2021, 18, 5199. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hagg, G. Seniam. Available online: http://www.seniam.org/ (accessed on 23 September 2021).
- Mirka, G.A. The quantification of EMG normalization error. Ergonomics 1991, 34, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Schepers, N.; Giuberti, M.; Bellusci, G. Xsens MVN: Consistent Tracking of Human Motion using Inertial Sensing; Xsens Technologies: Enschede, The Netherlands, 2018; pp. 1–8. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, version 25.0; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- Bosch, T.; van Eck, J.; Knitel, K.; de Looze, M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 2016, 54, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, M.; Lee, S.H. Virtual test framework for smith squat exercise based on integrated product-human model. Trans. Korean Soc. Mech. Eng. A 2017, 41, 691–701. [Google Scholar]
- Alexander, N.; Schwameder, H. Comparison of estimated measure muscle activity during inclined working. J. Appl. Biomech. 2016, 32, 150–159. [Google Scholar] [CrossRef]
- Dietrich, A.; Sparling, P.B. Endurance selectively impairs prefrontal-dependent cognition. Brain Cogn. 2004, 55, 516–524. [Google Scholar] [CrossRef]
- Remaud, A.; Boyas, S.; Caron, G.A.R.; Bilodeau, M. Attentional demands associated with postural control depend on task difficulty and visual condition. J. Mot. Behav. 2012, 44, 329–340. [Google Scholar] [CrossRef]
Age (years) | Height (cm) | Weight (kg) |
---|---|---|
24.8 ± 2.5 | 176.4 ± 3.8 | 78.8 ± 12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.-K.; Choi, K.-H.; Cho, M.-U.; Kim, S.-Y.; Kim, M.-J.; Shim, J.-W.; Park, S.-S.; Kim, K.-R.; Seo, M.-T.; Chae, H.-S.; et al. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System. Int. J. Environ. Res. Public Health 2022, 19, 8088. https://doi.org/10.3390/ijerph19138088
Kong Y-K, Choi K-H, Cho M-U, Kim S-Y, Kim M-J, Shim J-W, Park S-S, Kim K-R, Seo M-T, Chae H-S, et al. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System. International Journal of Environmental Research and Public Health. 2022; 19(13):8088. https://doi.org/10.3390/ijerph19138088
Chicago/Turabian StyleKong, Yong-Ku, Kyeong-Hee Choi, Min-Uk Cho, Seoung-Yoen Kim, Min-Jung Kim, Jin-Woo Shim, Sang-Soo Park, Kyung-Ran Kim, Min-Tae Seo, Hye-Seon Chae, and et al. 2022. "Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System" International Journal of Environmental Research and Public Health 19, no. 13: 8088. https://doi.org/10.3390/ijerph19138088
APA StyleKong, Y. -K., Choi, K. -H., Cho, M. -U., Kim, S. -Y., Kim, M. -J., Shim, J. -W., Park, S. -S., Kim, K. -R., Seo, M. -T., Chae, H. -S., & Shim, H. -H. (2022). Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System. International Journal of Environmental Research and Public Health, 19(13), 8088. https://doi.org/10.3390/ijerph19138088