Effects of Continuous Positive Airway Pressure Therapy on Nocturnal Blood Pressure Fluctuation Patterns in Patients with Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. PSG
2.3. CPAP Therapy
2.4. BP Measurement
2.5. Statistical Analysis
3. Results
3.1. Demographics and Effects of CPAP Therapy on Sleep-Related Parameters
3.2. Effects of CPAP Therapy on NBP and NBPFs
3.3. Association between Sleep-Related Parameters and Nocturnal BP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Collen, J.; Lettieri, C.; Wickwire, E.; Holley, A. Obstructive sleep apnea and cardiovascular disease, a story of confounders. Sleep Breath 2020, 24, 1299–1313. [Google Scholar] [CrossRef] [PubMed]
- Sawatari, H.; Chishaki, A.; Ando, S.I. The epidemiology of sleep disordered breathing and hypertension in various populations. Curr. Hypertens. Rev. 2016, 12, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Ochoa, J.E.; Bilo, G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr. Hypertens. Rep. 2012, 14, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Seif, F.; Patel, S.R.; Walia, H.K.; Rueschman, M.; Bhatt, D.L.; Blumenthal, R.S.; Quan, S.F.; Gottlieb, D.J.; Lewis, E.F.; Patil, S.P.; et al. Obstructive sleep apnea and diurnal nondipping hemodynamic indices in patients at increased cardiovascular risk. J. Hypertens. 2014, 32, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Ozono, R.; Edahiro, Y.; Ishii, K.; Seto, A.; Okita, T.; Teramen, K.; Fujiwara, S.; Kihara, Y. Impact of non-dipping on cardiovascular outcomes in patients with obstructive sleep apnea syndrome. Clin. Exp. Hypertens. 2015, 37, 449–453. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Grote, L.; McNicholas, W.T.; Hedner, J.; Verbraecken, J.; Parati, G.; Lombardi, C.; Basoglu, O.K.; Pataka, A.; Marrone, O.; et al. Mild obstructive sleep apnea increases hypertension risk, challenging traditional severity classification. J. Clin. Sleep Med. 2020, 16, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, A.M.; Gooneratne, N.S.; Marcus, C.L.; Ofer, D.; Richards, K.C.; Weaver, T.E. A systematic review of CPAP adherence across age groups: Clinical and empiric insights for developing CPAP adherence interventions. Sleep. Med. Rev. 2011, 15, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Cuspidi, C.; Tadic, M.; Sala, C.; Gherbesi, E.; Grassi, G.; Mancia, G. Blood pressure non-dipping and obstructive sleep apnea syndrome: A meta-analysis. J. Clin. Med. 2019, 8, 1367. [Google Scholar] [CrossRef]
- Xu, J.; Ding, N.; Zhang, X.; Wang, N.; Sun, B.; Zhang, R.; Xie, X.; Wan, Z.; Gu, Y.; Zhang, S.; et al. Nocturnal blood pressure fluctuation and associated influential factors in severe obstructive sleep apnea patients with hypertension. Sleep Breath 2018, 22, 1045–1052. [Google Scholar] [CrossRef]
- Xu, J.; Ding, N.; Chen, L.; Zhang, Y.; Huang, M.; Wang, Y.; Meng, Z.; Zhang, X. Inducers of post-apneic blood pressure fluctuation monitored by pulse transfer time measurement in obstructive sleep apnea varied with syndrome severity. Sleep Breath 2019, 23, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, B.; Hagen, E.W.; Finn, L.A.; Hla, K.M.; Carter, J.R.; Peppard, P.E. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: A longitudinal analysis of the Wisconsin Sleep Cohort. Thorax 2015, 70, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Pansani, A.P.; Schoorlemmer, G.H.; Ferreira, C.B.; Rossi, M.V.; Angheben, J.M.M.; Ghazale, P.P.; Gomes, K.P.; Cravo, S.L. Chronic apnea during REM sleep increases arterial pressure and sympathetic modulation in rats. Sleep 2021, 44, zsaa249. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; Dyken, M.E.; Mark, A.L.; Abboud, F.M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 1993, 328, 303–307. [Google Scholar] [CrossRef]
- BaHammam, A.S.; Alshahrani, M.; Aleissi, S.A.; Olaish, A.H.; Alhassoon, M.H.; Shukr, A. Blood pressure dipping during REM and non-REM sleep in patients with moderate to severe obstructive sleep apnea. Sci. Rep. 2021, 11, 7990. [Google Scholar] [CrossRef]
- Bilo, G.; Zorzi, C.; Ochoa Munera, J.E.; Torlasco, C.; Giuli, V.; Parati, G. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press. Monit. 2015, 20, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Pitson, D.J.; Stradling, J.R. Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur. Respir. J. 1998, 12, 685–692. [Google Scholar] [CrossRef]
- Gehring, J.; Gesche, H.; Drewniok, G.; Küchler, G.; Patzak, A. Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome. Sleep Breath 2018, 22, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Patzak, A.; Mendoza, Y.; Gesche, H.; Konermann, M. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement. Blood Press. 2015, 24, 217–221. [Google Scholar] [CrossRef]
- Kumagai, H.; Sawatari, H.; Hoshino, T.; Konishi, N.; Kiyohara, Y.; Kawaguchi, K.; Tsuda, H.; Haseda, Y.; Sasanabe, R.; Shiomi, T. Nocturnal blood pressure fluctuations in patients with rapid eye movement-related obstructive sleep apnea. J. Clin. Med. 2021, 10, 5023. [Google Scholar] [CrossRef] [PubMed]
- Gesche, H.; Grosskurth, D.; Küchler, G.; Patzak, A. Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. Eur. J. Appl. Physiol. 2012, 112, 309–315. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; Capote, F.; Campos-Rodríguez, F.; Lloberes, P.; Díaz de Atauri, M.J.; Somoza, M.; Masa, J.F.; González, M.; Sacristán, L.; Barbé, F.; et al. Effect of CPAP on blood pressure in patients with obstractive sleep apnea and resistant hypertension: The HIPARCO randomized clinical trial. JAMA 2013, 310, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.M.; Agusti, A.; Villar, I.; Forner, M.; Nieto, D.; Carrizo, S.J.; Barbé, F.; Vicente, E.; Wei, Y.; Nieto, F.J.; et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 2012, 307, 2169–2176. [Google Scholar] [CrossRef]
- Picard, F.; Panagiotidou, P.; Tammen, A.B.; Wolf-Pütz, A.; Steffen, M.; Gerhardy, H.J.; Waßenberg, S.; Klein, R.M. Nocturnal blood pressure and nocturnal blood pressure fluctuations: The effect of short-term CPAP therapy and their association with the severity of obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 361–371. [Google Scholar] [CrossRef]
- Sapiña-Beltrán, E.; Torres, G.; Benítez, I.; Santamaría-Martos, F.; Durán-Cantolla, J.; Egea, C.; Sánchez-de-la-Torre, M.; Barbé, F.; Dalmases, M. Differential blood pressure response to continuous positive airway pressure treatment according to the circadian pattern in hypertensive patients with obstructive sleep apnoea. Eur. Respir. J. 2019, 54, 1900098. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef] [PubMed]
- Misaka, T.; Niimura, Y.; Yoshihisa, A.; Wada, K.; Kimishima, Y.; Yokokawa, T.; Abe, S.; Oikawa, M.; Kaneshiro, T.; Kobayashi, A.; et al. Clinical impact of sleep-disordered breathing on very short-term blood pressure variability determined by pulse transit time. J. Hypertens. 2020, 38, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Liu, X.; Li, C.; Ye, Z.; Peng, H.; Chen, Z.; Lou, T. Reversed dipper blood-pressure pattern is closely related to severe renal and cardiovascular damage in patients with chronic kidney disease. PLoS ONE 2013, 8, e55419. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995, 96, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Findley, L.J.; Wilhoit, S.C.; Suratt, P.M. Apnea duration and hypoxemia during REM sleep in patients with obstructive sleep apnea. Chest 1985, 87, 432–436. [Google Scholar] [CrossRef]
- Flint, A.C.; Conell, C.; Ren, X.; Banki, N.M.; Chan, S.L.; Rao, V.A.; Melles, R.B.; Bhatt, D.L. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N. Engl. J. Med. 2019, 381, 243–251. [Google Scholar] [CrossRef]
- Marrone, O.; Bonsignore, M.R. Blood-pressure variability in patients with obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 10, 229–242. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kribbs, N.B.; Pack, A.I.; Kline, L.R.; Smith, P.L.; Schwartz, A.R.; Schubert, N.M.; Redline, S.; Henry, J.N.; Getsy, J.E.; Dinges, D.F. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 147, 887–895. [Google Scholar] [CrossRef]
- Varga, A.W.; Mokhlesi, B. REM obstructive sleep apnea: Risk for adverse health outcomes and novel treatments. Sleep Breath 2019, 23, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Pitson, D.J.; Sandell, A.; van den Hout, R.; Stradling, J.R. Use of pulse transit time as a measure of inspiratory effort in patients with obstructive sleep apnoea. Eur. Respir. J. 1995, 8, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Pitson, D.J.; Stradling, J.R. Autonomic markers of arousal during sleep in patients undergoing investigation for obstructive sleep apnoea, their relationship to EEG arousals, respiratory events and subjective sleepiness. J. Sleep. Res. 1998, 7, 53–59. [Google Scholar] [CrossRef] [PubMed]
Pre-CPAP | Post-CPAP | p-Value | |
---|---|---|---|
Sex (M/F (n)) | M (n = 25) F (n = 9) | - | - |
Age (years) | 50.5 ± 10.4 | - | - |
Smoking (n) | 4 (M: 4; F: 0) | - | - |
Antihypertensive (n) | 12 (M: 6; F: 6) | - | - |
BMI (kg/m2) | 26.5 ± 5.2 | 26.4 ± 4.3 | 0.761 |
Sleep-related parameters | |||
TST (min) | 407.4 ± 81.2 | 422.0 ± 72.3 | 0.3042 |
SE (%) | 82.6 ± 11.8 | 87.0 ± 7.6 | 0.0077 * |
N1 (%) | 29.0 ± 14.5 | 18.9 ± 8.4 | <0.0001 * |
N2 (%) | 52.5 ± 13.2 | 56.7 ± 8.4 | 0.0135 * |
N3 (%) | 2.9 ± 4.6 | 4.0 ± 4.2 | 0.0152 * |
REM (%) | 15.6 ± 5.1 | 20.4 ± 5.7 | <0.0001 * |
AHI (/h) | 39.3 ± 18.1 | 8.6 ± 6.1 | <0.0001 * |
REM-AHI (/h) | 39.3 ± 18.3 | 6.9 ± 7.6 | <0.0001 * |
NREM-AHI (/h) | 39.3 ± 20.5 | 9.9 ± 8.3 | <0.0001 * |
Arousal index (/h) | 22.7 ± 14.1 | 13.3 ± 6.5 | <0.0001 * |
REM-arousal index (/h) | 15.9 ± 14.7 | 6.0 ± 3.8 | <0.0001 * |
NREM-arousal index (/h) | 24.4 ± 14.7 | 15.3 ± 8.4 | <0.0001 * |
Min SpO2 (%) | 79.5 ± 8.6 | 86.2 ± 5.5 | <0.0001 * |
CT90 (min) | 16.1 ± 27.7 | 0.9 ± 1.5 | <0.0001 * |
PLMI (/h) | 4.1 ± 8.1 | 4.5 ± 9.6 | 0.4489 |
SL (min) | 20.1 ± 29.5 | 14.1 ± 15.7 | 0.2066 |
REM-SL (min) | 98.0 ± 73.0 | 92.7 ± 60.6 | 0.4455 |
Pre-CPAP | Post-CPAP | p-Value | |
---|---|---|---|
Frequency of NBPFs (/h) | 20.8 ± 18.2 | 10.6 ± 7.5 | <0.0001 * |
Respiratory-related NBPFs (/h) | 11.4 ± 13.8 | 2.3 ± 2.8 | <0.0001 * |
Maximum BP increase (mmHg) | 30.8 ± 14.3 | 26.4 ± 9.8 | 0.0972 |
Diurnal average SBP (mmHg) | 138.6 ± 18.5 | 131.9 ± 15.3 | 0.0079 * |
Diurnal average DBP (mmHg) | 91.8 ± 13.7 | 84.1 ± 10.1 | 0.0022 * |
Diurnal average HR (bpm) | 80.5 ± 9.4 | 80.0 ± 9.1 | 0.375 |
Nocturnal average SBP (mmHg) | 131.8 ± 19.2 | 122.6 ± 17.7 | 0.0039 * |
Nocturnal average DBP (mmHg) | 86.3 ± 14.3 | 77.1 ± 11.2 | 0.0004 * |
Nocturnal average HR (bpm) | 69.7 ± 9.3 | 65.8 ± 9.1 | 0.0012 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumagai, H.; Sawatari, H.; Hoshino, T.; Konishi, N.; Kiyohara, Y.; Kawaguchi, K.; Murase, Y.; Urabe, A.; Arita, A.; Shiomi, T. Effects of Continuous Positive Airway Pressure Therapy on Nocturnal Blood Pressure Fluctuation Patterns in Patients with Obstructive Sleep Apnea. Int. J. Environ. Res. Public Health 2022, 19, 9906. https://doi.org/10.3390/ijerph19169906
Kumagai H, Sawatari H, Hoshino T, Konishi N, Kiyohara Y, Kawaguchi K, Murase Y, Urabe A, Arita A, Shiomi T. Effects of Continuous Positive Airway Pressure Therapy on Nocturnal Blood Pressure Fluctuation Patterns in Patients with Obstructive Sleep Apnea. International Journal of Environmental Research and Public Health. 2022; 19(16):9906. https://doi.org/10.3390/ijerph19169906
Chicago/Turabian StyleKumagai, Hajime, Hiroyuki Sawatari, Tetsuro Hoshino, Noriyuki Konishi, Yuka Kiyohara, Kengo Kawaguchi, Yoko Murase, Ayako Urabe, Aki Arita, and Toshiaki Shiomi. 2022. "Effects of Continuous Positive Airway Pressure Therapy on Nocturnal Blood Pressure Fluctuation Patterns in Patients with Obstructive Sleep Apnea" International Journal of Environmental Research and Public Health 19, no. 16: 9906. https://doi.org/10.3390/ijerph19169906
APA StyleKumagai, H., Sawatari, H., Hoshino, T., Konishi, N., Kiyohara, Y., Kawaguchi, K., Murase, Y., Urabe, A., Arita, A., & Shiomi, T. (2022). Effects of Continuous Positive Airway Pressure Therapy on Nocturnal Blood Pressure Fluctuation Patterns in Patients with Obstructive Sleep Apnea. International Journal of Environmental Research and Public Health, 19(16), 9906. https://doi.org/10.3390/ijerph19169906