Factors Influencing Treatment Outcome and Proprioception after Electrocoagulation of the Femoral Insertion of the Anterior Cruciate Ligament
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Electrocoagulation of the Femoral Attachment of the ACL
2.2. Assessment of Deep Feeling
2.3. Lysholm Knee Score
2.4. Rehabilitation Procedure
2.5. Statistical Methods
3. Results
3.1. Characteristics of the Study Group
3.2. Parameters of Prioprioception at Stages of the Study
3.3. The Correlations between the Lysholm Scale and the Parameters of Deep Feeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanders, T.L.; Maradit Kremers, H.; Bryan, A.J.; Larson, D.R.; Dahm, D.L.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am. J. Sport. Med. 2016, 44, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Lamar, D.S.; Bartolozzi, A.R.; Freedman, K.B.; Nagda, S.H.; Fawcett, C. Thermal modification of partial tears of the anterior cruciate ligament. Arthroscopy 2005, 21, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Ribeiro, F.; Oliveira, J. Effect of an accelerated ACL rehabilitation protocol on knee proprioception and muscle strength after anterior cruciate ligament reconstruction. Arch. Exerc. Health Dis. 2012, 3, 139–144. [Google Scholar] [CrossRef]
- Furlanetto, T.S.; Peyre-Tartaruga, L.A.; do Pinho, A.S.; Bernardes Eda, S.; Zaro, M.A. Proprioception, Body Balance and Functionality in Individuals with Acl Reconstruction. Acta Ortop. Bras. 2016, 24, 67–72. [Google Scholar] [CrossRef]
- Kuenze, C.; Pietrosimone, B.; Lisee, C.; Rutherford, M.; Birchmeier, T.; Lepley, A.; Hart, J. Demographic and surgical factors affect quadriceps strength after ACL reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 921–930. [Google Scholar] [CrossRef]
- Suh, D.K.; Lee, J.H.; Rhim, H.C.; Cho, I.Y.; Han, S.B.; Jang, K.M. Comparison of muscle strength and neuromuscular control up to 1 year after anterior cruciate ligament reconstruction between patients with dominant leg and non-dominant leg injuries. Knee 2021, 29, 15–25. [Google Scholar] [CrossRef]
- Fleming, J.D.; Ritzmann, R.; Centner, C. Effect of an Anterior Cruciate Ligament Rupture on Knee Proprioception Within 2 Years After Conservative and Operative Treatment: A Systematic Review with Meta-Analysis. Sport. Med. 2022, 52, 1091–1102. [Google Scholar] [CrossRef]
- Wilk-Franczuk, M.; Tomaszewski, W.; Zemla, J.; Noga, H.; Czamara, A. Analysis of rehabilitation procedure following arthroplasty of the knee with the use of complete endoprosthesis. Med. Sci. Monit. 2011, 17, CR165–CR168. [Google Scholar] [CrossRef] [Green Version]
- Le Berre, M.; Guyot, M.A.; Agnani, O.; Bourdeauducq, I.; Versyp, M.C.; Donze, C.; Thevenon, A.; Catanzariti, J.F. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur. Spine J. 2017, 26, 1638–1644. [Google Scholar] [CrossRef]
- Piontek, T.; Ciemniewska-Gorzela, K.; Naczk, J.; Cichy, K.; Szulc, A. Linguistic and cultural adaptation into Polish of the IKDC 2000 subjective knee evaluation form and the Lysholm scale. Med. Sci. Monit. 2012, 77, 115–119. [Google Scholar]
- Saka, T. Principles of postoperative anterior cruciate ligament rehabilitation. World J. Orthop. 2014, 5, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Kachanathu, S.J. Early mobilization with double elbow crutches on stability and functional knee score in patients with anterior cruciate ligament repair. NJIRM 2012, 3, 152–158. [Google Scholar]
- Lazaro, R.M.; Dec, K.L. Knee Orthoses for Sports-Related Issues. In Atlas of Orthoses and Assistive Devices; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–267.e253. [Google Scholar]
- Mayr, H.O.; Stüeken, P.; Münch, E.-O.; Wolter, M.; Bernstein, A.; Suedkamp, N.P.; Stoehr, A. Brace or no-brace after ACL graft? Four-year results of a prospective clinical trial. Knee Surg. Sport. Traumatol. Arthrosc. 2014, 22, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.Y.; Fingerhut, D.; Moreira, V.C.; Camarini, P.M.; Scodeller, N.F.; Duarte, A., Jr.; Martinelli, M.; Bryk, F.F. Open kinetic chain exercises in a restricted range of motion after anterior cruciate ligament reconstruction: A randomized controlled clinical trial. Am. J. Sport. Med. 2013, 41, 788–794. [Google Scholar] [CrossRef]
- van der List, J.P.; DiFelice, G.S. Range of motion and complications following primary repair versus reconstruction of the anterior cruciate ligament. Knee 2017, 24, 798–807. [Google Scholar] [CrossRef]
- Karbowski, M.; Głowacka-Mrotek, I.; Nowacka, K.; Hagner, W. Rehabilitation of patients after anterior cruciate ligament reconstruction. J. Educ. Health Sport 2017, 7, 1540–1549. [Google Scholar]
- Kilgas, M.A.; Lytle, L.L.M.; Drum, S.N.; Elmer, S.J. Exercise with Blood Flow Restriction to Improve Quadriceps Function Long After ACL Reconstruction. Int. J. Sport. Med. 2019, 40, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.C.; Wojtys, E.M.; Brandon, C.; Palmieri-Smith, R.M. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J. Sci. Med. Sport. 2016, 19, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Hauger, A.V.; Reiman, M.; Bjordal, J.; Sheets, C.; Ledbetter, L.; Goode, A. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 399–410. [Google Scholar] [CrossRef]
- Grapar Zargi, T.; Drobnic, M.; Vauhnik, R.; Koder, J.; Kacin, A. Factors predicting quadriceps femoris muscle atrophy during the first 12weeks following anterior cruciate ligament reconstruction. Knee 2017, 24, 319–328. [Google Scholar] [CrossRef]
- Norte, G.E.; Knaus, K.R.; Kuenze, C.; Handsfield, G.G.; Meyer, C.H.; Blemker, S.S.; Hart, J.M. MRI-based assessment of lower-extremity muscle volumes in patients before and after ACL reconstruction. J. Sport Rehabil. 2018, 27, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.E.; Parker, E.A.; Duchman, K.R.; Westermann, R.W. Perioperative and Postoperative Factors Influence Quadriceps Atrophy and Strength After ACL Reconstruction: A Systematic Review. Orthop. J. Sport. Med. 2020, 8, 2325967120930296. [Google Scholar] [CrossRef] [PubMed]
- Lepley, L.K.; Davi, S.M.; Burland, J.P.; Lepley, A.S. Muscle Atrophy After ACL Injury: Implications for Clinical Practice. Sport. Health 2020, 12, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, E.R. ACL injury and rehabilitation. Curr. Phys. Med. Rehabil. Rep. 2014, 2, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Kruse, L.M.; Gray, B.; Wright, R.W. Rehabilitation after anterior cruciate ligament reconstruction: A systematic review. J. Bone Jt. Surgery. Am. Vol. 2012, 94, 1737–1748. [Google Scholar] [CrossRef] [Green Version]
- Heckmann, T.P.; Noyes, F.R.; Barber-Westin, S. Rehabilitation after ACL reconstruction. In ACL Injuries in the Female Athlete; Noyes, F., Barber-Westin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 505–535. [Google Scholar]
- Gokeler, A.; Benjaminse, A.; Van Eck, C.; Webster, K.; Schot, L.; Otten, E. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int. J. Sport. Phys. Ther. 2013, 8, 441. [Google Scholar]
- Gardinier, E.S.; Manal, K.; Buchanan, T.S.; Snyder-Mackler, L. Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture. Med. Sci. Sport. Exerc. 2012, 44, 1490–1496. [Google Scholar] [CrossRef] [Green Version]
- Sigward, S.M.; Lin, P.; Pratt, K. Knee loading asymmetries during gait and running in early rehabilitation following anterior cruciate ligament reconstruction: A longitudinal study. Clin. Biomech. 2016, 32, 249–254. [Google Scholar] [CrossRef]
- Schliemann, B.; Glasbrenner, J.; Rosenbaum, D.; Lammers, K.; Herbort, M.; Domnick, C.; Raschke, M.J.; Kosters, C. Changes in gait pattern and early functional results after ACL repair are comparable to those of ACL reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 374–380. [Google Scholar] [CrossRef]
- Lin, P.E.; Sigward, S.M. Contributors to knee loading deficits during gait in individuals following anterior cruciate ligament reconstruction. Gait Posture 2018, 66, 83–87. [Google Scholar] [CrossRef]
- Capin, J.J.; Zarzycki, R.; Arundale, A.; Cummer, K.; Snyder-Mackler, L. Report of the Primary Outcomes for Gait Mechanics in Men of the ACL-SPORTS Trial: Secondary Prevention With and Without Perturbation Training Does Not Restore Gait Symmetry in Men 1 or 2 Years After ACL Reconstruction. Clin. Orthop. Relat. Res. 2017, 475, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Arhos, E.K.; Capin, J.J.; Buchanan, T.S.; Snyder-Mackler, L. Quadriceps strength symmetry does not modify gait mechanics after anterior cruciate ligament reconstruction, rehabilitation, and return-to-sport training. Am. J. Sport. Med. 2021, 49, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Deie, M.; Iwaki, D.; Asaeda, M.; Fujita, N.; Adachi, N.; Ochi, M. Balance ability and proprioception after single-bundle, single-bundle augmentation, and double-bundle ACL reconstruction. Sci. World J. 2014, 2014, 342012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, J.A. Updating Recommendations for Rehabilitation after ACL Reconstruction: A Review. Clin. J. Sport. Med. 2013, 23, 501–502. [Google Scholar] [CrossRef]
- Buckthorpe, M. Optimising the Late-Stage Rehabilitation and Return-to-Sport Training and Testing Process After ACL Reconstruction. Sport. Med. 2019, 49, 1043–1058. [Google Scholar] [CrossRef]
- Relph, N.; Herrington, L. The effect of conservatively treated acl injury on knee joint position sense. Int. J. Sport. Phys. Ther. 2016, 11, 536–543. [Google Scholar]
- Buyukafsar, E.; Basar, S.; Kanatli, U. Proprioception following the Anterior Cruciate Ligament Reconstruction with Tibialis Anterior Tendon Allograft. J. Knee Surg. 2020, 33, 722–727. [Google Scholar] [CrossRef]
- Akbari, A.; Ghiasi, F.; Mir, M.; Hosseinifar, M. The Effects of Balance Training on Static and Dynamic Postural Stability Indices After Acute ACL Reconstruction. Glob. J. Health Sci. 2015, 8, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Haidary, M. Effects of proprioception exercises in the rehabilitation process of football players after arthroscopic surgery anterior cruciate ligament (ACL). J. Sport Biomech. 2017, 3, 15–25. [Google Scholar]
- Rodriguez-Roiz, J.M.; Caballero, M.; Ares, O.; Sastre, S.; Lozano, L.; Popescu, D. Return to recreational sports activity after anterior cruciate ligament reconstruction: A one- to six-year follow-up study. Arch. Orthop. Trauma. Surg. 2015, 135, 1117–1122. [Google Scholar] [CrossRef]
- Lee, M.; Sung, D.J.; Lee, J.; Oh, I.; Kim, S.; Kim, S.; Kim, J. Enhanced knee joint function due to accelerated rehabilitation exercise after anterior cruciate ligament reconstruction surgery in Korean male high school soccer players. J. Exerc. Rehabil. 2016, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.J.; McCarty, E.; Provencher, M.; Manske, R.C. ACL Return to Sport Guidelines and Criteria. Curr. Rev. Musculoskelet. Med. 2017, 10, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, W.T.; Myer, G.D.; Read, P.J. Is it time we better understood the tests we are using for return to sport decision making following ACL reconstruction? A critical review of the hop tests. Sport. Med. 2020, 50, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. Br. J. Sport. Med. 2016, 50, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgi, C.R.; Peters, S.; Ardern, C.L.; Magill, J.R.; Gomez, C.D.; Sylvain, J.; Reiman, M.P. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br. J. Sport. Med. 2019, 53, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Meredith, S.J.; Rauer, T.; Chmielewski, T.L.; Fink, C.; Diermeier, T.; Rothrauff, B.B.; Svantesson, E.; Hamrin Senorski, E.; Hewett, T.E.; Sherman, S.L.; et al. Return to Sport After Anterior Cruciate Ligament Injury: Panther Symposium ACL Injury Return to Sport Consensus Group. Orthop. J. Sport. Med. 2020, 8, 2325967120930829. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Serra, M.; Marcacci, M. Return to sport after ACL reconstruction: How, when and why? A narrative review of current evidence. Joints 2015, 3, 25. [Google Scholar] [CrossRef]
Phase | Aim | Frequency of Exercises | Sample Exercises |
---|---|---|---|
I early (0–10 days after surgery) | preventing swelling, restoration of the extension, learning to move correctly in the belaying of elbow crutches, protection of the ligament against stretching | every 1 h for 10 repetitions | Anticoagulant exercise Isometric exercises Extending the limb up (SLR) |
II restoration of muscle strength and range of movements (11 days–6 weeks) | preventing swelling, extension normalization, learning to move correctly in the belaying of elbow crutches on flat surfaces and stairs, protection of the ligament against stretching, restoration of the strength of the thigh muscles, restoration of the range of movements up to 90 degrees of flexion, knee brace | The whole set of exercises 2 times a day | Knee bending while sliding the heel on the ground (each week the range of bending in the knee joint should be increased by 15 degrees: SLR Exercises to strengthen adductors Learning the axial loading of the operated lower limbs Ex. proprioception in the supine and standing position Strengthening the strength of the muscles of the anterior and posterior thigh groups (pulling the tape) SLR seated on a chair with rubber March in place Strengthen the muscles of the posterior thigh group Stretching |
III rebuilding deep feeling (7–12 weeks-day) | preventing swelling, improving movement in the correct gait pattern on flat surfaces and stairs, protection of the ligament against stretching, restoration of the strength of the thigh muscles, restoration of the full range of movements, knee brace for walking outside the house, rebuilding deep feeling | The whole set of exercises 2 times a day | Recreate the full range of movements SLR in different starting positions Half-squats in a closed biomechanical chain Proprioception exercises on an unstable surface Exercises with eyes open and closed Marches on flat surfaces and stairs Stretching |
IV plyometric exercises/improvement exercises (13–16 weeks) | enhancing deep feeling, running and jumping exercises | The whole set of exercises 1 time a day | SLR in various positions Marching on the stairs Running and jumping Jumping one-legged Multi-jumps Marches with a change of pace and direction of movements Exercises in open biomechanical chains Proprioception exercises on an unstable surface Special exercises in selected sports disciplines Stretching |
Women (n = 12)/Men (n = 29) | All | |
---|---|---|
Age (mean ± SD) | 29.5 ± 8.9/29.5 ± 8.1 | 29.5 ± 8.3 |
Body mass (mean ± SD) | 62.2 ± 7.6/80.6 ± 7.3 | 75.2 ± 11.2 |
Height (mean ± SD) | 170.5 ± 4.9/176.8 ± 5.2 | 174.9 ± 5.9 |
BMI (mean ± SD) | 21.4 ± 2.2/25.8 ± 1.8 | 24.5 ± 2.8 |
Dominant surgical knee (%) | 14 (34.1%)/6 (14.6%) | 20 (48.8%) |
Thigh circumference difference | 1.8 ± 0.6/1.8 ± 0.6 | 1.8 ± 0.6 |
Shin circumference difference | 1.2 ± 0.6/1.1 ± 0.6 | 1.1 ± 0.6 |
Stage | Unterberg | Strength QF | Strength Hmstr | Flexion | Lysholm Scale |
---|---|---|---|---|---|
before | - | 3.9 ± 0.3 | 4 ± 0.1 | 104.4 ± 11.2 | 44.5 ± 16.4 |
7–10 days | - | 3.8 ± 0.3 | 4 ± 0.1 | 64.3 ± 4.6 | |
6 weeks | 40.7 ± 3.6 | 4.4 ± 0.3 | 4.4 ± 0.2 | 84.3 ± 5.9 | |
12 weeks | 16.7 ± 7.3 | 4.8 ± 0.3 | 4.8 ± 0.3 | 121.2 ± 7.8 | 98.9 ± 1.7 |
Lysholm Scale | Age | BMI | Circumf. Diff. | ||||||
---|---|---|---|---|---|---|---|---|---|
Time Surgery | Before | 7–10 Days | 6 Weeks | 12 Weeks | Shank | Thigh | |||
Unterberger | 6 weeks | −0.24 | 0.10 | −0.20 | −0.09 | 0.53 * | 0.11 | 0.15 | −0.04 |
12 weeks | −0.55 * | −0.06 | −0.42 * | −0.42 * | 0.54 * | 0.22 | 0.05 | −0.15 | |
quadriceps muscle strength | before | 0.47 * | 0.13 | 0.41 * | 0.33 * | −0.07 | 0.12 | −0.20 | −0.11 |
7–10 days | 0.20 | 0.01 | 0.21 | 0.24 | −0.04 | 0.17 | −0.21 | −0.21 | |
6 weeks | 0.41 * | 0.16 | 0.30 | 0.41 * | 0.07 | 0.02 | −0.26 | −0.35 * | |
12 weeks | 0.49 * | 0.30 | 0.49 * | 0.61 * | −0.12 | −0.08 | −0.11 | −0.35 * | |
Hamstrings’ muscle strength | before | 0.22 | 0.21 | 0.09 | 0.05 | 0.18 | 0.11 | −0.26 | −0.07 |
7–10 days | −0.05 | −0.21 | 0.15 | 0.19 | −0.14 | −0.22 | −0.06 | −0.31 * | |
6 weeks | 0.40 * | 0.28 | 0.34 * | 0.56 * | −0.01 | −0.20 | −0.16 | −0.21 | |
12 weeks | 0.50 * | 0.38 * | 0.51 * | 0.48 * | −0.05 | −0.11 | −0.10 | −0.21 | |
age | −0.15 | 0.21 | −0.12 | −0.20 | |||||
BMI | −0.08 | −0.07 | −0.40 * | −0.30 | 0.21 | ||||
circumf. diff. | shank | −0.20 | −0.11 | −0.24 | −0.12 | 0.08 | 0.19 | ||
thigh | −0.03 | −0.02 | −0.32 * | −0.44 * | −0.28 | 0.39 * | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogorzała, A.; Kądzielawska, E.; Kubaszewski, Ł.; Dąbrowski, M. Factors Influencing Treatment Outcome and Proprioception after Electrocoagulation of the Femoral Insertion of the Anterior Cruciate Ligament. Int. J. Environ. Res. Public Health 2022, 19, 13569. https://doi.org/10.3390/ijerph192013569
Pogorzała A, Kądzielawska E, Kubaszewski Ł, Dąbrowski M. Factors Influencing Treatment Outcome and Proprioception after Electrocoagulation of the Femoral Insertion of the Anterior Cruciate Ligament. International Journal of Environmental Research and Public Health. 2022; 19(20):13569. https://doi.org/10.3390/ijerph192013569
Chicago/Turabian StylePogorzała, Adam, Ewa Kądzielawska, Łukasz Kubaszewski, and Mikołaj Dąbrowski. 2022. "Factors Influencing Treatment Outcome and Proprioception after Electrocoagulation of the Femoral Insertion of the Anterior Cruciate Ligament" International Journal of Environmental Research and Public Health 19, no. 20: 13569. https://doi.org/10.3390/ijerph192013569
APA StylePogorzała, A., Kądzielawska, E., Kubaszewski, Ł., & Dąbrowski, M. (2022). Factors Influencing Treatment Outcome and Proprioception after Electrocoagulation of the Femoral Insertion of the Anterior Cruciate Ligament. International Journal of Environmental Research and Public Health, 19(20), 13569. https://doi.org/10.3390/ijerph192013569