Improved Oxygen Uptake Efficiency Parameters Are Not Correlated with VO2peak or Running Economy and Are Not Affected by Omega-3 Fatty Acid Supplementation in Endurance Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Supplementation
2.3. Treadmill Exercise Testing
2.4. Respiratory Gas Measurements
2.5. Determination of Oxygen Uptake Efficiency and Ventilatory Thresholds
2.6. Training Program
2.7. Erythrocyte Fatty Acid Analysis
2.8. Statistical Analysis
3. Results
3.1. Predicted VO2peak from OUE Equation
3.2. Oxygen Uptake Efficiency Plateau
3.3. Oxygen Uptake Efficiency at the Ventilatory Anaerobic Threshold
3.4. Correlation between OUEP, OUE@VAT and RE
3.5. Omega-3 Fatty Acids Supplementation
3.5.1. Oxygen Uptake Efficiency
3.5.2. Oxygen Uptake Efficiency Plateau
3.5.3. Oxygen Uptake at Ventilatory Anaerobic Threshold
4. Discussion
Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levine, B.D. What Do We Know, and What Do We Still Need to Know? J. Physiol. 2008, 586, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.L.; Buskirk, E.; Henschel, A. Maximal Oxygen Intake as an Objective Measure of Cardio-Respiratory Performance. J. Appl. Physiol. 1955, 8, 73–80. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the Maximum Oxygen Uptake Vo2max: Vo2peak Is No Longer Acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Sun, X.-G.; Hansen, J.E.; Stringer, W.W. Oxygen Uptake Efficiency Plateau: Physiology and Reference Values. Eur. J. Appl. Physiol. 2012, 112, 919–928. [Google Scholar] [CrossRef]
- Buckley, J.D.; Burgess, S.; Murphy, K.J.; Howe, P.R.C. DHA-Rich Fish Oil Lowers Heart Rate during Submaximal Exercise in Elite Australian Rules Footballers. J. Sci. Med. Sport 2009, 12, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; McAnulty, S.R.; Jin, F.; Maxwell, K.R. N-3 Polyunsaturated Fatty Acids Do Not Alter Immune and Inflammation Measures in Endurance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Żebrowska, A.; Mizia-Stec, K.; Mizia, M.; Gąsior, Z.; Poprzęcki, S. Omega-3 Fatty Acids Supplementation Improves Endothelial Function and Maximal Oxygen Uptake in Endurance-Trained Athletes. Eur. J. Sport Sci. 2015, 15, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Peoples, G.E.; McLennan, P.L.; Howe, P.R.C.; Groeller, H. Fish Oil Reduces Heart Rate and Oxygen Consumption During Exercise. J. Cardiovasc. Pharmacol. 2008, 52, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Hingley, L.; Macartney, M.J.; Brown, M.A.; McLennan, P.L.; Peoples, G.E. DHA-Rich Fish Oil Increases the Omega-3 Index and Lowers the Oxygen Cost of Physiologically Stressful Cycling in Trained Individuals. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 335–343. [Google Scholar] [CrossRef]
- Tomczyk, M.; Jost, Z.; Chroboczek, M.; Urbański, R.; Calder, P.C.; Fisk, H.L.; Sprengel, M.; Antosiewicz, J. Effects of 12 Weeks of Omega-3 Fatty Acid Supplementation in Long-Distance Runners. Med. Sci. Sports Exerc. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological Demands of Running at 2-Hour Marathon Race Pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Morán-Navarro, R.; Ortega, J.F.; Fernández-Elías, V.E.; Mora-Rodriguez, R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS ONE 2016, 11, e0163389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Day, J.R.; Rossiter, H.B.; Coats, E.M.; Skasick, A.; Whipp, B.J. The Maximally Attainable Vo2 during Exercise in Humans: The Peak vs. Maximum Issue. J. Appl. Physiol. 2003, 95, 1901–1907. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Simão, R.; Perez, A.; Gama, M.; Lanchtermacher, R.; Musialowski, R.; Braga, F.; de Mello Coelho, V.; Palma, A. A Randomized Controlled Trial Investigating the Effects of Undulatory, Staggered, and Linear Load Manipulations in Aerobic Training on Oxygen Supply, Muscle Injury, and Metabolism in Male Recreational Runners. Sports Med. Open 2019, 5, 32. [Google Scholar] [CrossRef]
- de Blaiser, C.; Roosen, P.; Willems, T.; Danneels, L.; vanden Bossche, L.; de Ridder, R. Is Core Stability a Risk Factor for Lower Extremity Injuries in an Athletic Population? A Systematic Review. Phys. Ther. Sport 2018, 30, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisk, H.L.; West, A.L.; Childs, C.E.; Burdge, G.C.; Calder, P.C. The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy. J. Vis. Exp. 2014, 85, e51445. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J.; Coyle, E.F. Endurance Exercise Performance: The Physiology of Champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.; McCarren, A.; Gray, C.; Murphy, R.P.; Harrison, M.; Wong, S.H.S.; Moyna, N.M. Maximal Oxygen Consumption and Oxygen Uptake Efficiency in Adolescent Males. J. Exerc. Sci. Fit. 2021, 19, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, M.; Knaier, R.; Beneke, R. The Oxygen Uptake Plateau—A Critical Review of the Frequently Misunderstood Phenomenon. Sport. Med. 2021, 51, 1815–1834. [Google Scholar] [CrossRef]
- Martin-Rincon, M.; Calbet, J.A.L. Progress Update and Challenges on VO2max Testing and Interpretation. Front. Physiol. 2020, 11, 1070. [Google Scholar] [CrossRef]
- Bongers, B.C.; Hulzebos, E.H.; Helbing, W.A.; ten Harkel, A.D.; van Brussel, M.; Takken, T. Response Profiles of Oxygen Uptake Efficiency during Exercise in Healthy Children. Eur. J. Prev. Cardiol. 2016, 23, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Mourot, L.; Perrey, S.; Tordi, N.; Rouillon, J.D. Evaluation of Fitness Level by the Oxygen Uptake Efficiency Slope after a Short-Term Intermittent Endurance Training. Int. J. Sports Med. 2004, 25, 85–91. [Google Scholar] [CrossRef]
- Yeh, M.P.; Gardner, R.M.; Adams, T.D.; Yanowitz, F.G.; Crapo, R.O. “Anaerobic Threshold”: Problems of Determination and Validation. J. Appl. Physiol. 1983, 55, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors Affecting Running Economy in Trained Distance Runners. Sport. Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Hoff, J.; Støren, Ø.; Finstad, A.; Wang, E.; Helgerud, J. Increased Blood Lactate Level Deteriorates Running Economy in World Class Endurance Athletes. J. Strength Cond. Res. 2016, 30, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. The Physiology of the World Record Holder for the Women’s Marathon. Int. J. Sports Sci. Coach. 2006, 1, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. N–3 Fatty Acids and Cardiovascular Disease: Evidence Explained and Mechanisms Explored. Clin. Sci. 2004, 107, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Harris, W.S.; Chung, M.; Lichtenstein, A.H.; Balk, E.M.; Kupelnick, B.; Jordan, H.S.; Lau, J. N−3 Fatty Acids from Fish or Fish-Oil Supplements, but Not α-Linolenic Acid, Benefit Cardiovascular Disease Outcomes in Primary- and Secondary-Prevention Studies: A Systematic Review. Am. J. Clin. Nutr. 2006, 84, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Very Long-Chain n-3 Fatty Acids and Human Health: Fact, Fiction and the Future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the Incorporation of Dietary Fatty Acids into Serum Cholesteryl Esters, Erythrocyte Membranes, and Adipose Tissue: An 18-Month Controlled Study. J. Lipid. Res. 1997, 38, 2012–2022. [Google Scholar] [CrossRef]
- McGlory, C.; Galloway, S.D.R.; Hamilton, D.L.; McClintock, C.; Breen, L.; Dick, J.R.; Bell, J.G.; Tipton, K.D. Temporal Changes in Human Skeletal Muscle and Blood Lipid Composition with Fish Oil Supplementation. Prostaglandins Leukot. Essent. Fat. Acids. 2014, 90, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A New Risk Factor for Death from Coronary Heart Disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Gravina, L.; Brown, F.F.; Alexander, L.; Dick, J.; Bell, G.; Witard, O.C.; Galloway, S.D.R. N-3 Fatty Acid Supplementation During 4 Weeks of Training Leads to Improved Anaerobic Endurance Capacity, but Not Maximal Strength, Speed, or Power in Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 305–313. [Google Scholar] [CrossRef] [PubMed]
Variable | MCT (n = 12) Mean ± SD | OMEGA (n = 14) Mean ± SD | |
---|---|---|---|
Age [y] | 37 ± 4 | 37 ± 3 | |
Body mass [kg] | 78.0 ± 8 | 76.3 ± 11 | |
Height [cm] | 180 ± 4 | 181 ± 7 | |
EPA [% of total erythrocyte fatty acids] | Pre | 1.2 ± 0.3 | 1.1 ± 0.4 |
Post | 1.2 ± 0.3 | 4.9 ± 1.1 *,^ | |
DHA [% of total erythrocyte fatty acids] | Pre | 4.4 ± 1.1 | 4.7 ± 1.0 |
Post | 4.5 ± 0.8 | 6.7 ± 0.8 *,^ | |
HRmax [beats*min−1] | Pre | 186 ± 9 | 190 ± 9 |
Post | 184 ± 7 | 189 ± 9 | |
VO2peak [mL*kg−1*min−1] | Pre | 54.7 ± 6.8 | 53.6 ± 4.4 |
Post | 56.4 ± 5.9 | 56.0 ± 3.7 * | |
RE [mL*kg−1*min−1] | Pre | 47.7 ± 3.3 | 47.6 ± 1.8 |
Post | 48.7 ± 2.9 | 46.5 ± 2.4 ^ |
Variable | MCT (n = 12) Mean ± SD | OMEGA (n = 14) Mean ± SD | ALL (n = 26) Mean ± SD | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
OUE [mL*L−1] | 35.5 ± 3.7 | 37.2 ± 3.1 *** | 35.4 ± 3.3 | 37.6 ± 3.1 *** | 35.5 ± 3.4 | 37.4 ± 3.0 *** |
OUEP [mL*L−1] | 41.8 ± 5.2 | 42.9 ± 3.8 | 41.3 ± 4.6 | 43.6 ± 4.0 * | 41.6 ± 4.8 | 43.2 ± 3.9 ** |
OUE@VAT [mL*L−1] | 33.2 ± 3.8 | 35.4 ± 3.5 ** | 32.7 ± 3.6 | 35.9 ± 4.7 * | 32.9 ± 3.7 | 35.7 ± 4.1 *** |
Ve [L*min−1] | 93.8 ± 11.6 | 90.7 ± 9.3 ** | 92.9 ± 20.4 | 87.4 ± 20.2 * | 93.3 ± 16.4 | 88.9 ± 15.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jost, Z.; Tomczyk, M.; Chroboczek, M.; Calder, P.C.; Laskowski, R. Improved Oxygen Uptake Efficiency Parameters Are Not Correlated with VO2peak or Running Economy and Are Not Affected by Omega-3 Fatty Acid Supplementation in Endurance Runners. Int. J. Environ. Res. Public Health 2022, 19, 14043. https://doi.org/10.3390/ijerph192114043
Jost Z, Tomczyk M, Chroboczek M, Calder PC, Laskowski R. Improved Oxygen Uptake Efficiency Parameters Are Not Correlated with VO2peak or Running Economy and Are Not Affected by Omega-3 Fatty Acid Supplementation in Endurance Runners. International Journal of Environmental Research and Public Health. 2022; 19(21):14043. https://doi.org/10.3390/ijerph192114043
Chicago/Turabian StyleJost, Zbigniew, Maja Tomczyk, Maciej Chroboczek, Philip C. Calder, and Radosław Laskowski. 2022. "Improved Oxygen Uptake Efficiency Parameters Are Not Correlated with VO2peak or Running Economy and Are Not Affected by Omega-3 Fatty Acid Supplementation in Endurance Runners" International Journal of Environmental Research and Public Health 19, no. 21: 14043. https://doi.org/10.3390/ijerph192114043