The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and the Procedure of Research
2.3. The Proprioceptive Training (PT) Program
- Balance training subprogram 1–without soccer ball.For balance and stability, we used three exercises:
- −
- Squats on both legs standing on the bosu ball; 4 × 10, time recovery 30 s.
- −
- Squats on one leg standing on the bosu ball; 4 × 10 per limb, time recovery 30 s.
- −
- Swinging leg forward, backward, and lateral while standing on one foot on the bosu ball; 4 × 10 per limb, time recovery 30 s.
- −
- For balance and strength, we used three exercises:
- −
- Forward jumps on one foot, from the ground on the bosu ball, and holding the landing position for 2–3 s; 4 × 10 per limb, time recovery 30 s.
- −
- Lateral jumps on one foot, from the ground on the bosu ball, and holding the landing position for 2–3 s; 4 × 10 per limb, time recovery 30 s.
- −
- Forward jump lunge on two bosu ball; 4 × 10, time recovery 30 s.
- Balance training subprogram 2–with soccer ball.For balance and stability, we used three exercises:
- −
- Kicking a soccer ball thrown by a team-mate while standing with both feet on bosu ball; 4 × 10 per limb, time recovery 30 s.
- −
- Kicking a soccer ball thrown by a team-mate while standing on one foot on bosu ball; 4 × 10 per limb, time recovery 30 s.
- −
- Heading a soccer ball thrown by a team-mate while standing on one foot on bosu ball; 4 × 10 per limb, time recovery 30 s.
- −
- For balance and strength, we used three exercises:
- −
- Forward jumps from a bosu ball to another, holding the landing position for 2–3 s, while kicking a soccer ball thrown by a team-mate; 4 × 10 per limb, time recovery 30 s.;
- −
- Kicking a soccer ball thrown by a team-mate while standing on one foot on the bosu ball with an elastic band tied around both feet; 4 × 10 per limb, time recovery 30 s.;
- −
- Move the soccer ball around the bosu ball while standing on one foot on the bosu ball; 4 × 6 per limb, time recovery 30 s.
2.4. Measures
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Strength Effects
4.2. Agility Effects
4.3. Dribbling Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gandevia, S.C.; Butler, A.A.; Héroux, M.E. Heritability of major components of proprioception. J. Appl. Physiol. 2018, 125, 971. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef]
- Fortier, S.; Basset, F.A. The effects of exercise on limb proprioceptive signals. J. Electromyogr. Kinesiol. 2012, 22, 795–802. [Google Scholar] [CrossRef]
- Riva, D.; Bianchi, R.; Rocca, F.; Mamo, C. Proprioceptive training and injury prevention in a professional men’s basketball team: A six-year prospective study. J. Strength Cond. Res. 2016, 30, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Gruber, M.; Gollhofer, A. Impact of sensorimotor training on the rate of force development and neural activation. Eur. J. Appl. Physiol. 2004, 92, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Taube, W.; Kullmann, N.; Leukel, C.; Kurz, O.; Amtage, F.; Gollhofer, A. Differential reflex adaptations following sensorimotor and strength training in young elite athletes. Int. J. Sports Med. 2007, 28, 999–1005. [Google Scholar] [CrossRef]
- Kim, D.; Van Ryssegem, G.; Hong, J. Overcoming the myth of proprioceptive training. Clin. Kinesiol. 2011, 65, 18–28. [Google Scholar]
- Rivera, M.J.; Winkelmann, Z.K.; Powden, C.J.; Games, K.E. Proprioceptive training for the prevention of ankle sprains: An evidence-based review. J. Athl. Train. 2017, 52, 1065–1067. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, H.; Kim, Y.H.; Kan, W. Comparison of the effect of resistance and balance training on isokinetic eversion strength, dynamic balance, hop test, and ankle score in ankle sprain. Life 2021, 11, 307. [Google Scholar] [CrossRef]
- Domínguez-Navarro, F.; Igual-Camacho, C.; Silvestre-Muñoz, A.; Roig-Casasús, S.; Blasco, J.M. Effects of balance and proprioceptive training on total hip and knee replacement rehabilitation: A systematic review and meta-analysis. Gait Posture 2018, 62, 68–74. [Google Scholar] [CrossRef]
- Burger, M.; Dreyer, D.; Fisher, R.L.; Foot, D.; O’Connor, D.H.; Galante, M.; Zalgaonkir, S. The effectiveness of proprioceptive and neuromuscular training compared to bracing in reducing the recurrence rate of ankle sprains in athletes: A systematic review and meta-analysis. J. Back Musculoskelet. Rehabil. 2018, 31, 221–229. [Google Scholar] [CrossRef]
- Draheim, C.; Mashburn, C.A.; Martin, J.D.; Engle, R.W. Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychol. Bull. 2019, 145, 508–535. [Google Scholar] [CrossRef]
- Kean, C.O.; Behm, D.G.; Young, W.B. Fixed foot balance training increases rectus femoris activation during landing and jump height in recreationally active women. J. Sports Sci. Med. 2006, 5, 138–148. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24198691 (accessed on 10 December 2021).
- Han, J.; Waddington, G.; Adams, R.; Anson, J.; Liu, Y. Assessing proprioception: A critical review of methods. J. Sport Health Sci. 2016, 5, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Forte, R.; Ditroilo, M.; Boreham, C.A.; De Vitom, G. Strength training and gross-motor skill exercise as interventions to improve postural control, dynamic functional balance and strength in older individuals. J. Sports Med. Phys. Fit. 2021, 61, 1570–1577. [Google Scholar] [CrossRef]
- Cressey, E.M.; West, C.A.; Tiberio, D.P.; Kraemer, W.J.; Maresh, C.M. The effects of ten weeks of lower-body unstable surface training on markers of athletic performance. J. Strength Cond. Res. 2007, 21, 561–567. [Google Scholar] [CrossRef]
- Gidu, V.D. Influence of proprioceptive training on the strenght of the lower limb in women soccer players. Mircea Batran Nav. Acad. Sci. Bull. 2016, 19, 405–407. [Google Scholar] [CrossRef]
- Sannicandro, I.; Cofano, G.; Rosa, R.A.; Piccinno, A. Balance training exercises decrease lower-limb strength asymmetry in young tennis players. J. Sports Sci. Med. 2014, 13, 397–402. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24790496 (accessed on 12 December 2021).
- Zech, A.; Hubscher, M.; Vogt, L.; Banzer, W.; Hansel, F.; Pfeifer, K. Balance training for neuromuscular control and performance enhancement: A systematic review. J. Athl. Train. 2010, 45, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Ciulea, L.E.; Szabó-Csifó, B. Improving students’functional capacity by introducing aerobics in the warm up part of physical education lessons. Educ. Artis Gymnast. 2019, 45, 45–53. [Google Scholar] [CrossRef]
- Ciulea, L.E.; Szabo-Csifo, B. The role of the functional training in optimising the motric capacity of junior female teams i-volleyball. Stud. Univ. Babes-Bolyai Educ. Artis Gymnast. 2014, 59, 4. [Google Scholar]
- Oancea, B.M. Study of improving second selection strategy in women’s basketball. Gymnasium 2016, 17, 7–20. [Google Scholar]
- Oancea, B. Study about the importance of basketball free throws in Romanian national’s leagues. Bull. Transilv. Univ. Brasov 2016, 9, 9–16. [Google Scholar]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. J. Athl. Train. 2007, 42, 42–46. Available online: https://www.ncbi.nlm.nih.gov/pubmed/17597942 (accessed on 16 December 2021).
- Viel, S.; Vaugoyeau, M.; Assaiante, C. Adolescence: A transient period of proprioceptive neglect in sensory integration of postural control. Mot. Control 2009, 13, 25–42. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19246776 (accessed on 15 December 2021). [CrossRef]
- Popa, C.E.; Galeru, O. Study regarding the improvement of postural control in children who have down syndrome through swimming. Gymn. Sci. J. Educ. Sports Health 2012, 2, 85–99. [Google Scholar]
- Galeru, O. Involving modern technical devices in the teaching–learning method of the professional swimming technique. Gymn. Sci. J. Educ. Sports Health 2008, 14, 212–219. [Google Scholar]
- Badau, A.; Rachita, A.; Sasu, C.R.; Clipa, A. Motivations and the level of practicing physical activities by physio-kinetotherapy students. Educ. Sci. 2018, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.E. The effectiveness of proprioceptive neuromuscular facilitation in regards to the improvement of motor control in lower limbs, post-immobilization. Gymn. Sci. J. Educ. Sports Health 2017, 1, 19–43. [Google Scholar] [CrossRef]
- Kostopoulos, N.; Bekris, E.; Apostolidis, N.; Kavroulakis, E.; Kostopoulos, P. The effect of a balance and proprioception training program on amateur basketball players’ passing skills. J. Phys. Educ. Sport 2012, 12, 316–323. [Google Scholar]
- Wong, T.K.K.; Ma, A.W.W.; Liu, K.P.Y.; Chung, L.M.Y.; Bae, Y.H.; Fong, S.S.M.; Ganesan, B.; Wang, H.K. Balance control, agility, eye-hand coordination, and sport performance of amateur badminton players: A cross-sectional study. Medicine 2019, 98, e14134. [Google Scholar] [CrossRef]
- Bekris, E.; Kahrimanis, G.; Anagnostakos, K.; Gkissis, I.; Christos, P.; Sotiropoulos, A. Proprioception and balance training can improve amateur soccer players’ technical skills. J. Phys. Educ. Sport 2012, 12, 81–89. [Google Scholar]
- Boraczynski, M.; Sozanski, H.; Boraczynski, T. Effects of a 12-month complex proprioceptive-coordinative training program on soccer performance in prepubertal boys aged 10-11 years. J. Strength Cond. Res. 2019, 33, 1380–1393. [Google Scholar] [CrossRef]
- Cerrah, A.O.; Bayram, I.; Yildizer, G.; Ugurlu, O.; Simsek, D.; Ertan, H. Effects of functional balance training on static and dynamic balance performance of adolescent soccer players. Int. J. Sport Exerc. Train. Sci. 2016, 2, 73–81. [Google Scholar]
- Dunsky, A.; Barzilay, I.; Fox, O. Effect of a specialized injury prevention program on static balance, dynamic balance and kicking accuracy of young soccer players. World J. Orthop. 2017, 8, 317–321. [Google Scholar] [CrossRef]
- Pérez-Gómez, J.; Adsuar, J.C.; Alcaraz, P.E.; Carlos-Vivas, J. Physical exercises for preventing injuries among adult male footballsoccer players: A systematic review. J. Sport Health Sci. 2020, 20, 30152–30156. [Google Scholar] [CrossRef]
- Rhodes, D.; Leather, M.; Birdsall, D.; Alexanderm, J. The effect of proprioceptive training on directional dynamic stabilization. J. Sport Rehabil. 2020, 30, 248–254. [Google Scholar] [CrossRef]
- Yoo, S.; Park, S.K.; Yoon, S.; Lim, H.S.; Ryu, J. Comparison of proprioceptive training and muscular strength training to improve balance ability of taekwondo poomsae athletes: A randomized controlled trials. J. Sports Sci. Med. 2018, 17, 445–454. [Google Scholar]
- BESS. Available online: https://idph.iowa.gov/Portals/1/Files/ACBI/BESS%20manual%20310.pdf (accessed on 12 January 2022).
- McLeod, T.C.; Armstrong, T.; Miller, M.; Sauers, J.L. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program. J. Sport Rehabil. 2009, 18, 465–481. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20108849 (accessed on 13 January 2022). [CrossRef]
- Bell, D.R.; Guskiewicz, K.M.; Clark, M.A.; Padua, D.A. Systematic review of the balance error scoring system. Sports Health 2011, 3, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Mohr, M. Fitness Testing in Football; Bangsbosport: Copenhagen, Denmark, 2012; pp. 1–167. [Google Scholar]
- Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 467–474. [Google Scholar] [CrossRef]
- Ghai, S.; Driller, M.; Ghai, I. Effects of joint stabilizers on proprioception and stability: A systematic review and meta-analysis. Phys. Ther. Sport 2017, 25, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Ashton-Miller, J.A.; Wojtys, E.M.; Huston, L.J.; Fry-Welch, D. Can proprioception really be improved by exercises? Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitkamp, H.C.; Horstmann, T.; Mayer, F.; Weller, J.; Dickhuth, H.H. Gain in strength and muscular balance after balance training. Int. J. Sports Med. 2001, 22, 285–290. [Google Scholar] [CrossRef]
- Granacher, U.; Wick, C.; Rueck, N.; Esposito, C.; Roth, R.; Zahner, L. Promoting balance and strength in the middle-aged workforce. Int. J. Sports Med. 2011, 32, 35–44. [Google Scholar] [CrossRef]
- Taube, W. Neurophysiological adaptations in response to balance training. Ger. J. Sport Med. 2012, 63, 273–277. [Google Scholar]
- Granacher, U.; Muehlbauer, T.; Maestrini, L.; Zahner, L.; Gollhofer, A. Can balance training promote balance and strength in prepubertal children? J. Strength Cond. Res. 2011, 25, 1759–1766. [Google Scholar] [CrossRef]
- Šimek, S.S.; Milanovic, D.; Jukić, I. The effects of proprioceptive training on jumping and agility performance. Kinesiology 2007, 39, 131–141. [Google Scholar]
- Zemkova, E.; Hamar, D. The effect of 6-week combined agility-balance training on neuromuscular performance in basketball players. J. Sports Med. Phys. Fit. 2010, 50, 262–267. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20842085 (accessed on 14 January 2022).
- Manolopoulos, K.; Gissis, I.; Galazoulas, C.; Manolopoulos, E.; Patikas, D.; Gollhofer, A.; Kotzamanidis, C. Effect of combined sensorimotor-resistance training on strength, balance, and jumping performance of soccer players. J. Strength Cond. Res. 2016, 30, 53–59. [Google Scholar] [CrossRef]
- Badau, D.; Badau, A.; Clipa, A. Interaction Between Values of Anthropometric Body and Static Balance Related to the Characeristics of the Three Plastic Fitness Equipment. Mater. Plast. 2018, 55, 600–602. [Google Scholar] [CrossRef]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG activity and loss of force output with instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, D.; Spasic, M.; Mirkov, D.; Cavar, M.; Sattler, T. Gender-specific influences of balance, speed, and power on agility performance. J. Strength Cond. Res. 2013, 27, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Balogun, J.A.; Adesinasi, C.O.; Marzouk, D.K. The effects of a wobble board exercise training program on static balance performance and strength of lower extremity muscles. Physiother. Can. 1992, 44, 23–30. [Google Scholar]
- Zemková, E.; Hamar, D. Sport-specific assessment of the effectiveness of neuromuscular training in young athletes. Front. Physiol. 2018, 11, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zago, M.; Piovan, A.G.; Annoni, I.; Ciprandi, D.; Iaia, F.M.; Sforza, C. Dribbling determinants in sub-elite youth soccer players. J. Sports Sci. 2016, 34, 411–419. [Google Scholar] [CrossRef]
- Chicomban, M. The pilates program. A mean of improving balance-related motor abilities. Bull. Transilv. Univ. Braşov. Ser. IX Sci. Hum. Kinet. 2020, 13, 27–34. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Roth, R.; Bopp, M.; Granacher, U. An exercise sequence for progression in balance training. J. Strength Cond. Res. 2012, 26, 568–574. [Google Scholar] [CrossRef]
Tests | Types of Surfaces | Group | Phase of Test | X ± SD | DX | 95% CI Lower | 95% CI Upper | t | p | d |
---|---|---|---|---|---|---|---|---|---|---|
Single-leg stance | On firm surface | Control | Pre-test | 0.911 ± 0.592 | 0.16 | −0.006 | 0.181 | 0.235 | 0.157 | 0.258 |
Post-test | 0.752 ± 0.637 | |||||||||
Experiment | Pre-test | 1.084 ± 1.144 | 0.68 | −0.024 | 0.212 | 0.102 | 0.006 | 0.731 | ||
Post-test | 0.406 ± 0.642 | |||||||||
On foam surface | Control | Pre-test | 3.582 ± 1.264 | 0.281 | −0.137 | 0.462 | 0.712 | 0.218 | 0.273 | |
Post-test | 3.251 ± 1.152 | |||||||||
Experiment | Pre-test | 3.665 ±2.938 | 1.904 | −1.193 | 2.782 | 0.587 | 0.002 | 0.713 | ||
Post-test | 1.561 ± 2.956 | |||||||||
Double-leg stance | On firm surface | Control | Pre-test | 0.413 ± 0.076 | 0.011 | −0.005 | 0.324 | 0.326 | 0.282 | 0.179 |
Post-test | 0.402 ± 0.042 | |||||||||
Experiment | Pre-test | 0.466 ± 0.428 | 0.264 | −0.172 | 0.486 | 0.117 | 0.000 | 0.670 | ||
Post-test | 0.202 ± 0.356 | |||||||||
On foam surface | Control | Pre-test | 2.325 ± 0.987 | 0.112 | −0.092 | 0.723 | 0.825 | 0.006 | 0.122 | |
Post-test | 2.213 ± 0.839 | |||||||||
Experiment | Pre-test | 2.427 ± 1.942 | 1.288 | −0.231 | 2.298 | 0.246 | 0.000 | 0.696 | ||
Post-test | 1.139 ± 0.251 | |||||||||
Tandem stance | On firm surface | Control | Pre-test | 1.082 ± 0.286 | 0.101 | −0.068 | 0.186 | 0.214 | 0.072 | 0.211 |
Post-test | 0.981 ± 0.451 | |||||||||
Experiment | Pre-test | 1.167 ± 0.938 | 0.284 | −0.108 | 0.492 | 0.081 | 0.000 | 0.752 | ||
Post-test | 0.451 ± 0.965 | |||||||||
On foam surface | Control | Pre-test | 1.037 ± 0.301 | 0.066 | −0.351 | 0.226 | 0.357 | 0.196 | 0.208 | |
Post-test | 0.971 ± 0.331 | |||||||||
Experiment | Pre-test | 1.389 ± 1.499 | 0.778 | −0.405 | 0.926 | 0.127 | 0.000 | 0.617 | ||
Post-test | 0.611 ± 0.965 | |||||||||
Total BESS score | Both surfaces (firm + foam) | Control | Pre-test | 9.350 ± 2.114 | 0.780 | −0.506 | 1.158 | 0.475 | 0.246 | 0.380 |
Post-test | 8.570 ± 1.987 | |||||||||
Experiment | Pre-test | 10.198 ± 8.987 | 5.828 | −4.372 | 6.316 | 0.102 | 0.000 | 0.705 | ||
Post-test | 4.370 ± 7.453 |
Tests | Group | Phase of Test | Leg | X ± SD | DX | 95% CI Lower | 95% CI Upper | t | p | d |
---|---|---|---|---|---|---|---|---|---|---|
Single-leg forward jump | Control | Pre-test | R | 160.000 ± 9.957 | −1.083 | 6.911 | 4.744 | −0.374 | 0.710 | 0.109 |
Post-test | R | 161.083 ± 9.896 | ||||||||
Pre-test | L | 155.833 ± 8.597 | −0.583 | −5.704 | 4.537 | −0.229 | 0.820 | 0.066 | ||
Post-test | L | 156.416 ± 8.989 | ||||||||
Experiment | Pre-test | R | 159.166 ± 4.793 | −3.916 | −4.950 | −2.882 | −7.622 | 0.000 | 0.693 | |
Post-test | R | 163.083 ± 4.493 | ||||||||
Pre-test | L | 157.500 ± 7.811 | −2.416 | −3.088 | −1.744 | −7.236 | 0.000 | 0.322 | ||
Post-test | L | 159.916 ± 7.175 | ||||||||
Single-leg lateral jump | Control | Pre-test | R | 128.166 ± 8.513 | −0.333 | −4.984 | 4.317 | −0.144 | 0.886 | 0.039 |
Post-test | R | 128.500 ± 8.460 | ||||||||
Pre-test | L | 125.750 ± 6.239 | −0.583 | −6.230 | 5.064 | −0.208 | 0.836 | 0.088 | ||
Post-test | L | 126.333 ± 6.909 | ||||||||
Experiment | Pre-test | R | 127.500 ± 5.780 | −2.937 | −5.325 | −0.549 | −2.475 | 0.017 | 0.529 | |
Post-test | R | 130.437 ± 5.297 | ||||||||
Pre-test | L | 125.125 ± 6.159 | −2.791 | −4.614 | −0.968 | −3.081 | 0.003 | 0.447 | ||
Post-test | L | 127.916 ± 6.327 | ||||||||
Single-leg vertical jump | Control | Pre-test | R | 19.252 ± 1.868 | −0.306 | −0.983 | 0.371 | −0.909 | 0.368 | 0.169 |
Post-test | R | 19.558 ± 1.732 | ||||||||
Pre-test | L | 19.066 ± 2.191 | −0.247 | −1.305 | 0.809 | −0.472 | 0.639 | 0.121 | ||
Post-test | L | 19.314 ± 1.896 | ||||||||
Experiment | Pre-test | R | 19.650 ± 2.996 | −1.352 | −2.295 | −0.408 | −2.883 | 0.006 | 0.584 | |
Post-test | R | 21.002 ± 2.266 | ||||||||
Pre-test | L | 19.450 ± 1.467 | −0.964 | −1.564 | −0.364 | −3.234 | 0.002 | 0.523 | ||
Post-test | L | 20.414 ± 2.151 | ||||||||
Double-leg CMJ | Control | Pre-test | - | 35.300 ± 2.380 | −0.516 | −1.391 | 0.358 | −1.188 | 0.241 | 0.200 |
Post-test | - | 35.816 ± 2.758 | ||||||||
Experiment | Pre-test | - | 35.716 ± 2.801 | −1.775 | −2.516 | −1.033 | −4.817 | 0.000 | 0.661 | |
Post-test | - | 37.491 ± 2.563 |
Tests | Group | Phase of Test | X ± SD | DX | 95% CI Lower | 95% CI Upper | t | p | d |
---|---|---|---|---|---|---|---|---|---|
Agility right side | Control | Pre-test | 8.442 ± 0.592 | 0.120 | −0.002 | 0.242 | 1.970 | 0.055 | 0.205 |
Post-test | 8.322 ± 0.578 | ||||||||
Experiment | Pre-test | 8.445 ± 0.426 | 0.402 | 0.293 | 0.511 | 7.435 | 0.000 | 0.747 | |
Post-test | 8.043 ± 0.449 | ||||||||
Agility left side | Control | Pre-test | 8.680 ± 0.620 | 0.086 | −0.003 | 0.176 | 1.933 | 0.059 | 0.144 |
Post-test | 8.593 ± 0.580 | ||||||||
Experiment | Pre-test | 8.655 ± 0.415 | 0.319 | 0.264 | 0.374 | 11.694 | 0.000 | 0.658 | |
Post-test | 8.335 ± 0.548 | ||||||||
Agility right + left side | Control | Pre-test | 17.122 ± 0.447 | 0.054 | −0.114 | 0.224 | 0.649 | 0.519 | 0.121 |
Post-test | 17.067 ± 0.457 | ||||||||
Experiment | Pre-test | 17.111 ± 0.443 | 0.240 | 0.083 | 0.397 | 3.078 | 0.003 | 0.508 | |
Post-test | 16.871 ± 0.499 | ||||||||
Short dribbling test | Control | Pre-test | 13.630 ± 0.769 | 0.099 | −0.192 | 0.391 | 0.686 | 0.496 | 0.129 |
Post-test | 13.530 ± 0.777 | ||||||||
Experiment | Pre-test | 13.575 ± 0.514 | 0.273 | 0.162 | 0.384 | 4.956 | 0.000 | 0.513 | |
Post-test | 13.302 ± 0.548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidu, D.V.; Badau, D.; Stoica, M.; Aron, A.; Focan, G.; Monea, D.; Stoica, A.M.; Calota, N.D. The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 2028. https://doi.org/10.3390/ijerph19042028
Gidu DV, Badau D, Stoica M, Aron A, Focan G, Monea D, Stoica AM, Calota ND. The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players. International Journal of Environmental Research and Public Health. 2022; 19(4):2028. https://doi.org/10.3390/ijerph19042028
Chicago/Turabian StyleGidu, Diana Victoria, Dana Badau, Marius Stoica, Adrian Aron, George Focan, Dan Monea, Alina Mihaela Stoica, and Nicoleta Daniela Calota. 2022. "The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players" International Journal of Environmental Research and Public Health 19, no. 4: 2028. https://doi.org/10.3390/ijerph19042028
APA StyleGidu, D. V., Badau, D., Stoica, M., Aron, A., Focan, G., Monea, D., Stoica, A. M., & Calota, N. D. (2022). The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players. International Journal of Environmental Research and Public Health, 19(4), 2028. https://doi.org/10.3390/ijerph19042028