Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Recruitment
2.2. Experimental Procedure
2.2.1. Session 1
2.2.2. Session 2
2.2.3. Sessions 3–8
2.3. Outcome Measures
2.4. Statistical Analysis
- (1)
- Group models: Data from the exercise session, including VO2 (ml/kg/min) and normalized sEMG rms (µV), were used to construct group models. The exercise type (shoulder press, deadlift, and squat) was analyzed as a factor, as well as the dependent variable (VO2 in ml/kg/min) and covariates or independent variables (normalized sEMG_rms in µV) of eight muscles for the untrained and trained groups across each set of data.
- (2)
- Exercise models: Data from the exercise phase, including VO2, was used to estimate exercise models. Using the same variables as described before, three types of exercise models were established. For the untrained and trained groups, the factors considered were training session (sessions 1, 3, and 6), dependent variable (VO2 in ml/kg/min), and covariates (normalized sEMG rms in µV) of eight muscles across each set of data.
3. Results
3.1. Baseline Characteristics of Participants
3.2. VO2 Models of Three Training Sessions (Group Models)
3.3. VO2 Models of Three Training Sessions (Exercise Models)
3.4. Comparison between VO2 and Normalized sEMGrms
3.5. Muscle Strength Pre vs. Post
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [PubMed]
- Fletcher, G.F.; Balady, G.; Froelicher, V.F.; Hartley, L.H.; Haskell, W.L.; Pollock, M.L. Exercise standards: A statement for healthcare professionals from the American Heart Association. Circulation 1995, 91, 580–615. [Google Scholar] [CrossRef]
- Pollock, M.L.; Gaesser, G.A.; Butcher, J.D.; Després, J.P.; Dishman, R.K.; Franklin, B.A.; Garber, C.E. ACSM position stand: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. 1998, 30, 6. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. 2011. Available online: https://academiccommons.columbia.edu/doi/10.7916/D8CR5T2R (accessed on 1 February 2022).
- Kalb, J.S.; Hunter, G. Weight training economy as a function of intensity of the squat and overhead press exercise. J. Sports Med. Phys. Fit. 1991, 31, 154–160. [Google Scholar]
- Mazzetti, S.; Douglass, M.; Yocum, A.; Harber, M. Effect of explosive versus slow contractions and exercise intensity on energy expenditure. Med. Sci. Sports Exerc. 2007, 39. [Google Scholar] [CrossRef] [Green Version]
- Haltom, R.W.; Kraemer, R.R.; Sloan, R.A.; Hebert, E.P.; Frank, K.; Tryniecki, J.L. Circuit weight training and its effects on excess postexercise oxygen consumption. Med. Sci. Sports Exerc. 1999, 31, 1613. [Google Scholar] [CrossRef] [PubMed]
- Ballor, D.L.; Becque, M.D.; Katch, V.L. Metabolic responses during hydraulic resistance exercise. Med. Sci. Sports Exerc. 1987, 19, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Haddock, B.; Wilkin, L. Resistance training volume and post exercise energy expenditure. Int. J. Sports Med. 2006, 27, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.T.; Ziuraitis, J.R. Energy cost of the ACSM single-set resistance training protocol. J. Strength Cond. Res. 2003, 17, 350–355. [Google Scholar] [CrossRef]
- Ratamess, N.A.; Falvo, M.J.; Mangine, G.T.; Hoffman, J.R.; Faigenbaum, A.D.; Kang, J. The effect of rest interval length on metabolic responses to the bench press exercise. Eur. J. Appl. Physiol. 2007, 100, 1–17. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Parr, R.B.; Ward, P.; Vodak, P.A.; Barstow, T.J.; Pipes, T.V.; Grimditch, G.; Leslie, P. Energy cost of circuit weight training. Med. Sci. Sports Exerc. 1978, 10, 75–78. [Google Scholar]
- Thornton, M.K.; Potteiger, J.A. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med. Sci. Sports Exerc. 2002, 34, 715–722. [Google Scholar]
- Hunter, G.; Blackman, L.; Dunnam, L.; Flemming, G. Bench press metabolic rate as a function of exercise intensity. J. Appl. Sports Sci. Res. 1988, 2, 1–6. [Google Scholar]
- Kang, J.; Hoffman, J.R.; Im, J.; Spiering, B.A.; Ratamess, N.A.; Rundell, K.W.; Nioka, S.; Cooper, J.; Chance, B. Evaluation of physiological responses during recovery following three resistance exercise programs. J. Strength Cond. Res. 2005, 19, 305–309. [Google Scholar] [PubMed]
- Croonen, F.; Binkhorst, R. Oxygen uptake calculated from expiratory volume and oxygen analysis only. Ergonomics 1974, 17, 113–117. [Google Scholar] [CrossRef]
- Neto, W.K.; Vieira, T.L.; Gama, E.F. Barbell hip thrust, muscular activation and performance: A systematic review. J. Sports Sci. Med. 2019, 18, 198. [Google Scholar]
- Rosenberger, A.; Beijer, Å.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J. Changes in motor unit activity and respiratory oxygen uptake during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training. J. Musculoskelet. Neuronal Interact. 2019, 19, 159–168. [Google Scholar]
- Watanabe, K.; Narouei, S. Association between Oxygen Consumption and Surface Electromyographic Amplitude and Its Variation within Individual Calf Muscles during Walking at Various Speeds. Sensors 2021, 21, 1748. [Google Scholar] [CrossRef]
- Warburton, D.E.; Jamnik, V.; Bredin, S.S.; Shephard, R.J.; Gledhill, N. The 2019 physical activity readiness questionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+). Health Fit. J. Can. 2018, 11, 80–83. [Google Scholar]
- Adeel, M.; Lai, C.H.; Wu, C.W.; Kang, J.H.; Liou, J.C.; Chen, H.C.; Lin, B.S.; Hong, M.J.; Feng, C.T.; Peng, C.W. Modeling of metabolic equivalents (Mets) during moderate resistance training exercises. Appl. Sci. 2021, 11, 8773. [Google Scholar] [CrossRef]
- Kubo, Y.; Fujita, D.; Sugiyama, S.; Hosokawa, M.; Nishida, Y. Pulmonary oxygen uptake on-kinetics can predict acute physiological responses to resistance exercise training in healthy young men. Clin. Physiol. Funct. Imaging 2019, 39, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Davis, C. Upright bicycle and treadmill stress echocardiography techniques and technical hints for the sonographer. J. Am. Soc. Echocardiogr. 1994, 7, 194–200. [Google Scholar] [CrossRef]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Shimano, T.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Hatfield, D.L.; Silvestre, R.; Vingren, J.L.; Fragala, M.S.; Maresh, C.M.; Fleck, S.J.; et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J. Strength Cond. Res. 2006, 20, 819–823. [Google Scholar]
- Lyristakis, P.; Ball, N.; McKune, A.J. Reliability of methods to measure energy expenditure during and after resistance exercise. Appl. Physiol. Nutr. Metab. 2019, 44, 1276–1282. [Google Scholar] [CrossRef]
- Hales, M.E.; Johnson, J.D. The influence of sport-field properties on muscle-recruitment patterns and metabolic response. Int. J. Sports Physiol. Perform. 2019, 14, 83–90. [Google Scholar] [CrossRef]
- Burton, P.; Gurrin, L.; Sly, P. Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling. Stat. Med. 1998, 17, 1261–1291. [Google Scholar] [CrossRef]
- Piggott, B.; Müller, S.; Chivers, P.; Cripps, A.; Hoyne, G. Interdisciplinary sport research can better predict competition performance, identify individual differences, and quantify task representation. Front. Sports Act. Living 2020, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.H.; Tan, S.B. The correct interpretation of confidence intervals. Proc. Singap. Healthc. 2010, 19, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef]
- Hug, F.; Decherchi, P.; Marqueste, T.; Jammes, Y. EMG versus oxygen uptake during cycling exercise in trained and untrained subjects. J. Electromyogr. Kinesiol. 2004, 14, 187–195. [Google Scholar] [CrossRef]
Exercise Order | Training Session | Exercises | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Sequence 1 | Training 1 | Shoulder press | Deadlift | Squat |
Training 2 | Shoulder press | Deadlift | Squat | |
Sequence 2 | Training 3 | Deadlift | Shoulder press | Squat |
Training 4 | Deadlift | Shoulder press | Squat | |
Sequence 3 | Training 5 | Squat | Shoulder press | Deadlift |
Training 6 | Squat | Shoulder press | Deadlift | |
Each training was conducted on a different day for a total of six workouts. |
Participant | Age (Years) | Gender | Height (cm) | Body Weight (kg) | Body-Mass Index (kg/m2) | Shoulder Press (60% RM) | Deadlift (60% RM) | Squat (60% RM) |
---|---|---|---|---|---|---|---|---|
Untrained (n = 5) | ||||||||
S1 | 23 | F | 151 | 50 | 22 | 11.5 | 24 | 19 |
S2 | 21 | F | 158 | 59 | 23.7 | 9 | 16.5 | 14 |
S3 | 20 | F | 159 | 53 | 21 | 7 | 16.5 | 14 |
S4 | 21 | F | 165 | 53 | 19.5 | 9 | 16.5 | 14 |
S5 | 25 | F | 160 | 51 | 20.1 | 9 | 24 | 19 |
Mean ± SD | 22.00 ± 1.79 | -- | 158.60 ± 4.50 | 53.20 ± 3.12 | 21.26 ± 1.48 | 9.10 ± 1.43 | 19.50 ± 3.67 | 16.00 ± 2.45 |
Trained (n = 6) | ||||||||
S1 | 26 | M | 175 | 92 | 30 | 16.5 | 29 | 26.5 |
S2 | 23 | M | 186 | 100 | 28.8 | 19 | 34 | 34 |
S3 | 29 | F | 160 | 55 | 21.6 | 9 | 34 | 29 |
S4 | 20 | M | 184 | 90 | 26.7 | 16.5 | 34 | 34 |
S5 | 29 | F | 165 | 58 | 21.5 | 16.5 | 39 | 34 |
S6 | 28 | M | 170 | 94 | 32.5 | 19 | 36.5 | 36.5 |
Mean ± SD | 25.83 ± 3.34 | -- | 173.33 ± 9.45 | 81.50 ± 17.96 | 26.85 ± 4.12 | 16.08 ± 3.36 | 34.42 ± 3.03 | 32.33 ± 3.44 |
Group | Model | Parameter | Estimate (ß) | SE | 95% CI (Lower~Upper) | p |
---|---|---|---|---|---|---|
UTr | Model 1 | Intercept | 9.068 | 0.530 | 8.030~10.107 | 0.000 |
(QIC 368) | RBFsEMG-rms | 0.527 | 0.541 | −0.532~1.586 | 0.330 | |
Tr | Model 2 | Intercept | 11.134 | 0.703 | 9.757~12.511 | 0.000 |
(QIC 837) | LMDsEMG-rms | 0.298 | 0.157 | −0.010~0.607 | 0.058 |
(a) | |||||||
Exercise | Group | Model | Parameter | Estimate (ß) | SE | 95% CI (Lower~Upper) | p |
Shoulder press | UTr | Model 1 (QIC 102) | Intercept | 3.489 | 1.009 | 1.512~5.466 | 0.001 |
LBFsEMG-rms | −23.844 | 2.104 | −27.967~−19.721 | 0.000 * | |||
RMDsEMG-rms | 0.942 | 0.204 | 0.543~1.341 | 0.000 * | |||
RBFsEMG-rms | 17.088 | 3.673 | 9.890~24.286 | 0.000 * | |||
LMDsEMG-rms | −0.737 | 0.143 | −1.016~−0.457 | 0.000 * | |||
LRFsEMG-rms | −1.050 | 0.304 | −1.646~−0.454 | 0.001 * | |||
Tr | Model 2 (QIC 82) | Intercept | 5.727 | 0.271 | 5.195~6.259 | 0.000 | |
LRFsEMG-rms | 7.685 | 1.814 | 4.131~11.240 | 0.000 * | |||
(b) | |||||||
Exercise | Group | Model | Parameter | Estimate (ß) | SE | 95% CI (Lower~Upper) | p |
Deadlift | UTr | Model 3 (QIC 172) | Intercept | 11.701 | 1.065 | 9.613~13.789 | 0.000 |
RLESsEMG-rms | 9.366 | 1.425 | 6.573~12.159 | 0.000 * | |||
LLESsEMG-rms | −10.428 | 2.030 | −14.407~−6.448 | 0.000 * | |||
RBFsEMG-rms | −2.086 | 0.459 | −2.985~−1.186 | 0.000 * | |||
Tr | Model 4 (QIC 320) | Intercept | 9.314 | 1.339 | 6.689~11.939 | 0.000 | |
LLESsEMG-rms | 3.362 | 1.506 | 0.411~6.313 | 0.026 * | |||
(c) | |||||||
Exercise | Group | Model | Parameter | Estimate (ß) | SE | 95% CI (Lower~Upper) | p |
Squat | UTr | Model 5 (QIC 76) | Intercept | 10.328 | 0.875 | 8.612~12.043 | 0.000 |
LBFsEMG-rms | −11.262 | 0.538 | −12.318~−10.207 | 0.000 * | |||
RLESsEMG-rms | −3.318 | 0.514 | −4.325~−2.312 | 0.000 * | |||
LLESsEMG-rms | 6.891 | 1.420 | 4.108~9.675 | 0.000 * | |||
LMDsEMG-rms | 0.653 | 0.126 | 0.406~0.901 | 0.000 * | |||
RBFsEMG-rms | 1.758 | 0.391 | 0.992~2.524 | 0.000 * | |||
Tr | Model 6 (QIC 348) | Intercept | 10.781 | 0.758 | 9.295~12.266 | 0.000 | |
LLESsEMG-rms | 0.494 | 0.155 | 0.191~0.797 | 0.001 * |
Parameters | Untrained (n = 5) | Trained (n = 6) | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Within Subject | Mauchly’s Sphericity | Between Groups | ||||||
Rep | Tra | Rep | Tra | |||||
Oxygen Consumption | SP | 4.61 ± 0.48 | 7.04 ± 0.44 | 0.372 | 0.909 | 0.724 | 0.369 | 0.005 * |
DL | 9.17 ± 0.80 | 10.81 ± 0.73 | 0.687 | 0.120 | 0.870 | 0.104 | 0.165 | |
SQ | 9.35 ± 0.76 | 11.60 ± 0.70 | 0.254 | 0.058 | 0.909 | 0.478 | 0.057 | |
Right Middle Deltoid | SP | 3.45 ± 0.68 | 3.23 ± 0.62 | 0.860 | 0.570 | 0.832 | 0.009 a | 0.817 |
DL | 1.06 ± 0.41 | 0.80 ± 0.37 | 0.555 | 0.214 | 0.016 b | 0.012 c | 0.653 | |
SQ | 2.18 ± 0.56 | 1.65 ± 0.51 | 0.493 | 0.826 | 0.108 | 0.043 d | 0.505 | |
Left Middle Deltoid | SP | 2.61 ± 0.57 | 2.31 ± 0.52 | 0.105 | 0.574 | 0.235 | 0.008 e | 0.708 |
DL | 1.11 ± 0.42 | 0.75 ± 0.38 | 0.939 | 0.161 | 0.106 | 0.070 | 0.537 | |
SQ | 2.04 ± 0.50 | 1.74 ± 0.46 | 0.546 | 0.284 | 0.285 | 0.240 | 0.661 | |
Right Lumbar Erector Spinae | SP | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.815 | 0.016 * | 0.958 | 0.012 f | 0.989 |
DL | 0.66 ± 0.08 | 0.42 ± 0.07 | 0.433 | 0.126 | 0.037 g | 0.000 h | 0.048 * | |
SQ | 0.59 ± 0.07 | 0.39 ± 0.06 | 0.630 | 0.023 * | 0.435 | 0.000 i | 0.056 | |
Left Lumbar Erector Spinae | SP | 0.07 ± 0.02 | 0.08 ± 0.01 | 0.690 | 0.346 | 0.002 j | 0.063 | 0.814 |
DL | 0.71 ± 0.08 | 0.44 ± 0.07 | 0.027 | 0.137 | 0.001 k | 0.065 | 0.033 * | |
SQ | 0.59 ± 0.08 | 0.48 ± 0.07 | 0.420 | 0.519 | 0.000 l | 0.000 m | 0.314 | |
Right Rectus Femoris | SP | 0.12 ± 0.03 | 0.16 ± 0.03 | 0.272 | 0.365 | 0.696 | 0.441 | 0.450 |
DL | 0.45 ± 0.08 | 0.33 ± 0.08 | 0.190 | 0.138 | 0.076 | 0.019 n | 0.333 | |
SQ | 1.58 ± 0.17 | 0.89 ± 0.15 | 0.297 | 0.407 | 0.326 | 0.675 | 0.014 * | |
Left Rectus Femoris | SP | 0.15 ± 0.04 | 0.17 ± 0.04 | 0.056 | 0.872 | 0.409 | 0.531 | 0.676 |
DL | 0.39 ± 0.08 | 0.28 ± 0.07 | 0.189 | 0.368 | 0.569 | 0.046 o | 0.325 | |
SQ | 1.46 ± 0.16 | 0.91 ± 0.14 | 0.595 | 0.249 | 0.553 | 0.209 | 0.032 * | |
Right Biceps Femoris | SP | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.672 | 0.504 | 0.004 p | 0.126 | 0.719 |
DL | 0.64 ± 0.09 | 0.42 ± 0.08 | 0.477 | 0.724 | 0.159 | 0.692 | 0.087 | |
SQ | 0.47 ± 0.08 | 0.31 ± 0.07 | 0.136 | 0.162 | 0.447 | 0.003 q | 0.178 | |
Left Biceps Femoris | SP | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.442 | 0.233 | 0.363 | 0.002 r | 0.618 |
DL | 0.69 ± 0.09 | 0.41 ± 0.08 | 0.458 | 0.357 | 0.105 | 0.514 | 0.045 * | |
SQ | 0.46 ± 0.06 | 0.31 ± 0.06 | 0.104 | 0.286 | 0.497 | 0.873 | 0.092 |
Parameters | Untrained (n = 5) | Trained (n = 6) | p-Value | |
---|---|---|---|---|
Within Subject Pre vs. Post | Between Groups | |||
Right Middle Deltoid | 85.08 ± 22.01 | 156.28 ± 20.09 | 0.926 | 0.041 * |
Left Middle Deltoid | 85.49 ± 17.82 | 136.28 ± 16.27 | 0.951 | 0.065 |
Right Lumbar Erector Spinae | 130.35 ± 23.14 | 212.27 ± 21.12 | 0.016 * | 0.028 * |
Left Lumbar Erector Spinae | 134.93 ± 18.87 | 207.78 ± 17.23 | 0.017 * | 0.019 * |
Right Rectus Femoris | 281.61 ± 34.25 | 426.36 ± 31.27 | 0.170 | 0.012 * |
Left Rectus Femoris | 283.40 ± 34.01 | 408.43 ± 31.04 | 0.085 | 0.024 * |
Right Biceps Femoris | 208.81 ± 19.06 | 249.48 ± 17.40 | 0.569 | 0.149 |
Left Biceps Femoris | 181.45 ± 22.73 | 256.76 ± 20.75 | 0.950 | 0.037 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeel, M.; Chen, H.-C.; Lin, B.-S.; Lai, C.-H.; Wu, C.-W.; Kang, J.-H.; Liou, J.-C.; Peng, C.-W. Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises. Int. J. Environ. Res. Public Health 2022, 19, 2233. https://doi.org/10.3390/ijerph19042233
Adeel M, Chen H-C, Lin B-S, Lai C-H, Wu C-W, Kang J-H, Liou J-C, Peng C-W. Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises. International Journal of Environmental Research and Public Health. 2022; 19(4):2233. https://doi.org/10.3390/ijerph19042233
Chicago/Turabian StyleAdeel, Muhammad, Hung-Chou Chen, Bor-Shing Lin, Chien-Hung Lai, Chun-Wei Wu, Jiunn-Horng Kang, Jian-Chiun Liou, and Chih-Wei Peng. 2022. "Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises" International Journal of Environmental Research and Public Health 19, no. 4: 2233. https://doi.org/10.3390/ijerph19042233
APA StyleAdeel, M., Chen, H. -C., Lin, B. -S., Lai, C. -H., Wu, C. -W., Kang, J. -H., Liou, J. -C., & Peng, C. -W. (2022). Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises. International Journal of Environmental Research and Public Health, 19(4), 2233. https://doi.org/10.3390/ijerph19042233