Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Indicators
2.2. Data Source
2.3. Methods
3. Results
3.1. Characteristic of Cultivated Land Use Efficiency in China
3.2. Cultivated Land Use Efficiency by Province
3.3. Improvement Potential of Cultivated Land Use Efficiency in China
3.4. Convergence Test of Cultivated Land Use Efficiency
3.4.1. Absolute σ-Convergence Test
3.4.2. Absolute β-Convergence Test
3.4.3. Conditional β-Convergence Test
4. Discussion
4.1. Analysis of Overall Characteristics of Cultivated Land Use Efficiency in China
4.2. Analysis of the Characteristics of Cultivated Land Use Efficiency between Provinces
4.3. Analysis of Overall Improvement Potential of Cultivated Land Use Efficiency in China
4.4. Potential Analysis of Improvement in Cultivated Land Use Efficiency among Provinces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linnér, H.; Messing, I. Agricultural land needs protection. Acta Agric. Scand. Sect. B-Plant Soil Sci. 2012, 62, 706–710. [Google Scholar] [CrossRef]
- Masini, E.; Tomao, A.; Barbati, A.; Corona, P.; Serra, P.; Salvati, L. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 2018, 63, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, S.; Cheng, L. Evaluation of cultivated land use efficiency with environmental constraints in the Dongting Lake Eco-Economic Zone of Hunan province, China. Land 2020, 9, 440. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, W.; Pan, C.; Qiu, G.; Xu, S.; Liu, S. Study on the influencing factors of farmers’ adoption of conservation tillage technology in black soil region in China: A logistic-ISM model approach. Int. J. Environ. Res. Public Health 2022, 19, 7762. [Google Scholar] [CrossRef] [PubMed]
- Mosier, A.R.; Duxbury, J.M.; Frreney, J.R. Mitigation agricultural emission of methane. Clim. Chang. 1998, 40, 39–80. [Google Scholar] [CrossRef]
- Li, X.; Cui, X.; Wang, M. Nalysis of China’s carbon emissions base on carbon flow in four main sectors: 2000–2013. Sustainability 2017, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Pautian, K.; Cole, C.V. CO2 mitigation by agriculture: An overview. Clim. Chang. 1998, 40, 135–162. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Long, H. Analysis of arable land loss and its impact on rural sustainability in Southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef]
- Van Vliet, J.; De Groot, H.L.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Perovich, I.; Perovich, L.; Hulko, O.; Malanchuk, M. The use and evaluation of ecological and economic efficiency of agricultural land in Ukraine. Geod. Cartogr. 2020, 69, 189–204. [Google Scholar]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM–DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Binam, J.N.; Tonye, J.; Nyambi, G.; Akoa, M. Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon. Food Policy 2004, 29, 531–545. [Google Scholar] [CrossRef]
- Wang, L.; Li, H. Cultivated land use efficiency and the regional characteristics of its influencing factors in China: By using a panel data of 281 prefectural cities and the stochastic frontier production function. Geogr. Res. 2015, 33, 1995–2004. [Google Scholar]
- Yang, Y.; Deng, X.; Li, Z.; Wu, F.; Li, X. Impact of land use change on grain production efficiency in North China Plain during 2000–2015. Geogr. Res. 2017, 36, 2171–2183. [Google Scholar]
- Deng, X.; Gibson, J. Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China. Technol. Forecast. Soc. Chang. 2019, 144, 394–400. [Google Scholar] [CrossRef]
- Peng, J.; Wen, L.; Fu, L.; Yi, M. Total factor productivity of cultivated land use in China under environmental constraints: Temporal and spatial variations and their influencing factors. Environ. Sci. Pollut. Res. Int. 2020, 27, 18443–18462. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, X. Land-use change and efficiency in Laos’ Special Economic Zones. Land 2021, 10, 1012. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Chang. 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Shi, L.; Liu, L.; Meng, X.; Yang, B. Spatio-temporal differentiation and influencing factors of industrial green water resources efficiency in the Yangtze River Economic Belt: Two-stage analysis based on EBM-Tobit model. Resour. Sci. 2017, 39, 1522–1534. [Google Scholar]
- Jiang, H. Spatial-temporal differences of industrial land use efficiency and its influencing factors for China’s central region: Analyzed by SBM model. Environ. Technol. Innov. 2021, 22, 101489. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for ranking efficient Units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1265. [Google Scholar] [CrossRef]
- Tichenor, N.E.; Zanten, H.H.E.; Boer, I.J.M.; Peters, C.J. Land use efficiency of beef systems in the Northeastern USA from a food supply perspective. Agric. Syst. 2017, 156, 34–42. [Google Scholar] [CrossRef]
- Kendall, M.G. The geographical distribution of crop productivity in England. J. R. Stat. Soc. 1939, 102, 21–62. [Google Scholar] [CrossRef]
- Ramanaiah, N. Changes in agricultural land use efficiency in Andhra Pradesh: A study by the standard coefficient method. Land Use Policy 1985, 2, 210–216. [Google Scholar]
- Xie, H.; He, Y.; Zou, J.; Wu, Q. Spatio-temporal difference analysis of cultivated land use intensity based on energy in the Poyang Lake Eco-economic Zone of China. J. Geogr. Sci. 2016, 26, 1412–1430. [Google Scholar] [CrossRef]
- Quaye, A.K.; Hall, C.A.S.; Luzadis, V.A. Agricultural land use efficiency and food crop production in Ghana. Environ. Dev. Sustain. 2010, 12, 967–983. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, H.; Shi, L.; Wang, H.; Xiu, Z.; Qiu, X.; Chang, H.; Xie, Y.; Wang, Y.; Wang, C. Spatial-temporal changes and driving factors of land-use eco-efficiency incorporating ecosystem services in China. Sustainability 2021, 13, 728. [Google Scholar] [CrossRef]
- Liang, L.; Qu, F.; Wang, C. Analysis on cultivated land use efficiency based on DEA. Resour. Environ. Yangtze Basin 2008, 17, 242–246. [Google Scholar]
- Lin, H.; Hülsbergen, K. A new method for analyzing agricultural land-use efficiency, and its application in organic and conventional farming systems in southern Germany. Eur. J. Agron. 2017, 83, 15–27. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Q. Land use eco-efficiency and its convergence characteristics under the constraint of carbon emissions in China. Int. J. Environ. Res. Public Health 2019, 16, 3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Liang, L. Agricultural land efficiency and temporal-spatial characteristics: Desired output and undesired pollution emissions. Resour. Sci. 2012, 34, 2249–2255. [Google Scholar]
- Kuang, B.; Lu, H.; Han, J.; Zhang, Z. Regional differences and dynamic evolution of cultivated land use efficiency in major grain producing areas in low carbon perspective. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–8. [Google Scholar]
- Feng, Y.; Peng, Y.; Deng, Z. Spatial-temporal variation of cultivated land’s utilization efficiency in China based on the dual perspective of non-point source pollution and carbon emission. China Popul. Resour. Environ. 2015, 25, 18–25. [Google Scholar]
- Liu, M.; Zhang, A.; Wen, G. Temporal and spatial pattern and evolution trend of cultivated land use ecological efficiency in the main grain producing areas in the Lower Yangtze Region. China Land Sci. 2021, 35, 50–60. [Google Scholar]
- Xie, H.; Chen, Q.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Wang, G.; Liao, M.; Jiang, J. Research on agricultural carbon emissions and regional carbon emissions reduction strategies in China. Sustainability 2020, 12, 2627. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, F. Research on the utilization and efficiency change of farmland resources of Chinese farmers. China Popul. Resour. Environ. 2009, 19, 131–136. [Google Scholar]
- Qi, Y. Measurement and decomposition of China’s total factor productivity growth under carbon emission constraint—Based on SBM directional distance function and GML Index. Ind. Technol. Econ. 2013, 32, 137–146. [Google Scholar]
- Lu, X.; Kuang, B.; Li, J. The regional differences and impact factors of cultivated land use efficiency under carbon emission constraints. J. Nat. Resour. 2018, 33, 657–668. [Google Scholar]
- Xie, H.; Zhang, Y.; Yongrok, C. Measuring the cultivated land use efficiency of the main grain-producing areas in China under the constraints of carbon emissions and agricultural nonpoint source pollution. Sustainability 2018, 10, 1932. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Gao, J.; Tang, Z.; Li, C. Comparative analysis of food consumption carbon emission of urban and rural residents in China. Pratacult. Sci. 2018, 35, 2022–2030. [Google Scholar]
- Feng, X.; Zou, J. Economic analysis of CO2 emission trends in China. China Popul. Resour. Environ. 2008, 18, 43–47. [Google Scholar]
- Li, B.; Zhang, J.; Li, H. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Wang, B.; Zhang, W. A research of agricultural eco-efficiency measure in China and space-time differences. China Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar] [CrossRef]
- Wu, F.; Li, L.; Zhang, H.; Chen, F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chin. J. Ecol. 2007, 12, 2035–2039. [Google Scholar]
- Wu, X.; Zhang, J.; Tian, Y.; Li, P. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resour. Sci. 2014, 36, 129–138. [Google Scholar]
- Aparicio, J.; Ruiz, J.L.; Sirvent, I. Closest targets and minimum distance to the Pareto-efficient frontier in DEA. J. Product. Anal. 2007, 28, 209–218. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Year Book. 2009. Available online: http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm (accessed on 20 August 2022).
- National Bureau of Statistics of China. China Statistical Year Book. 2015. Available online: http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm (accessed on 20 August 2022).
- Cui, X. Research on the Measurement of Agricultural Production Efficiency and the Influencing Factors under the Constraints of Resources and Environment. Ph.D. Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Wang, Q. Fixed-effect panel threshold model using Stata. Stata J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Ye, H.; Pu, L. Regional difference and convergence of cultivated land use efficiency in China. J. Nat. Resour. 2011, 26, 1467–1474. [Google Scholar]
- Wang, L.; Li, H. Regional differences of arable land use efficiency and its influencing factors in China: Panel data and stochastic frontier production function method based on 281 cities. Geogr. Res. 2014, 33, 1995–2004. [Google Scholar]
- Ministry of Agriculture of the People’s Republic of China. Action Plan for Zero Growth of Chemical Fertilizer and Pesticide Use. Available online: http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827907.htm (accessed on 20 August 2022).
- Ministry of Agriculture of the People’s Republic of China. Realization of the Action Goal of Zero Growth of Chemical Fertilizer and Pesticide Consumption. Available online: http://www.moa.gov.cn/xw/zwdt/202101/t20210117_6360031.htm (accessed on 20 August 2022).
- CPC Central Committee and State Council. Opinions on Completely, Accurately and Comprehensively Implementing the New Development Concept and doing a Good Job of Carbon Peaking and Carbon Neutralization. Available online: http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm (accessed on 20 August 2022).
Indicator | Variable | Variable Description | Unit |
---|---|---|---|
Input | Labor input | Number of employees in the primary industry × (output value of planting industry/total output value of agriculture, forestry, animal husbandry and fishery)/total cultivated land area | people/ha |
Pesticide input | Pesticide use/total cultivated land area | kg/ha | |
Fertilizer input | Usage of agricultural chemical fertilizer (pure)/total cultivated land area | kg/ha | |
Power input of agricultural machinery | Total power of agricultural machinery/total cultivated land area | kw/ha | |
Irrigation input | Agricultural water consumption × (output value of planting industry/total output value of agriculture, forestry, animal husbandry and fishery)/total cultivated land area | cubic meters/ha | |
Agricultural plastic film input | Agricultural plastic film usage/total cultivated land area | kg/ha | |
Expected output | Planting output value | The gross output value of planting industry/total cultivated land area | yuan/ha |
Unexpected output | Carbon emission | Total carbon emissions of cultivated land/total cultivated land area | kg/ha |
Carbon Source | Carbon Emission Coefficient | Unit | Sources |
---|---|---|---|
Pesticide | 4.9341 | kg/kg | [44] |
Fertilizer | 0.8956 | kg/kg | [44] |
Agricultural film | 5.18 | kg/kg | [47] |
Agricultural machinery | 0.18 | kg/kw | [44] |
Irrigation | 20.476 | kg/hm2 | [48,49] |
Plowing | 312.6 | kg/km2 | [33,50] |
Rice planting | 3.136 | g/(m2×day) | [33,51] |
Year | Labor (%) | Fertilizer (%) | Pesticide (%) | Agricultural Plastic Film (%) | Agricultural Machinery Power (%) | Irrigation (%) | Planting Output Value (%) | Carbon Emission (%) |
---|---|---|---|---|---|---|---|---|
2009 | −6.59 | −7.23 | −5.84 | −5.61 | −11.33 | −4.07 | 2.24 | −18.49 |
2010 | −8.03 | −6.86 | −4.36 | −3.32 | −11.43 | −2.46 | 2.94 | −16.83 |
2011 | −7.84 | −7.99 | −21.75 | −6.43 | −15.21 | −4.84 | 3.91 | −20.58 |
2012 | −7.99 | −8.11 | −21.05 | −7.49 | −13.68 | −1.28 | 3.02 | −21.25 |
2013 | −5.72 | −6.59 | −18.39 | −6.60 | −11.68 | −2.35 | 3.15 | −16.40 |
2014 | −3.35 | −8.40 | −18.35 | −10.02 | −13.32 | −3.12 | 3.66 | −16.23 |
2015 | −3.65 | −8.89 | −20.50 | −9.61 | −13.18 | −4.40 | 3.84 | −13.66 |
2016 | −8.35 | −9.66 | −18.86 | −12.86 | −19.73 | −7.04 | 4.35 | −13.54 |
2017 | −10.12 | −5.85 | −14.86 | −8.72 | −11.21 | −3.36 | 4.11 | −10.44 |
2018 | −8.50 | −6.43 | −9.24 | −4.93 | −11.30 | −3.35 | 4.89 | −10.31 |
2019 | −6.04 | −6.60 | −7.89 | −2.74 | −8.48 | −2.76 | 5.28 | −9.53 |
Average value | −6.92 | −7.51 | −14.64 | −7.12 | −12.78 | −3.55 | 3.76 | −15.21 |
Province | Labor (%) | Fertilizer (%) | Pesticide (%) | Agricultural Plastic Film (%) | Agricultural Machinery Power (%) | Irrigation (%) | Planting Output Value (%) | Carbon Emission (%) |
---|---|---|---|---|---|---|---|---|
Heilongjiang | −1.42 | 0.00 | 0.00 | −2.07 | −5.87 | −6.55 | 1.46 | −10.00 |
Sichuang | −1.93 | −0.50 | 0.00 | −6.31 | −0.56 | −3.07 | 0.00 | −4.21 |
Guizhou | −18.87 | 0.00 | 0.00 | −9.88 | −5.08 | 0.00 | 1.45 | −14.45 |
Hubei | −3.97 | −6.38 | −14.60 | 0.00 | −7.11 | 0.00 | 0.00 | −13.31 |
Guangxi | −15.83 | −10.71 | 0.00 | 0.00 | −12.34 | −1.42 | 0.39 | −9.19 |
Shandong | −0.53 | −3.46 | −15.96 | −10.44 | −23.78 | −2.35 | 5.32 | 0.00 |
Fujian | −0.09 | −9.02 | −16.49 | −5.49 | −2.64 | 0.00 | 0.00 | −18.32 |
Hebei | −3.09 | −4.74 | −29.58 | 0.00 | −36.19 | −10.03 | 0.25 | 0.00 |
Tianjin | 0.00 | −27.08 | −0.02 | −10.83 | −39.39 | −4.57 | 1.23 | −2.42 |
Neimenggu | 0.00 | −40.50 | −8.13 | −5.85 | −32.88 | −13.49 | 0.00 | 0.00 |
Liaoning | −0.21 | −8.82 | −21.96 | −30.26 | −4.80 | 0.00 | 1.64 | −20.15 |
Hainan | 0.00 | −13.50 | −42.52 | −4.86 | −0.84 | −0.01 | 2.07 | −17.43 |
Yunan | −22.85 | −11.12 | −7.84 | −21.58 | −1.73 | −16.72 | 31.63 | 0.00 |
Shanxi | −42.74 | −31.59 | −39.52 | 0.00 | −12.67 | −7.36 | 1.03 | 0.00 |
Jilin | 0.00 | −50.53 | −4.19 | −6.16 | −24.91 | −1.05 | 21.60 | −17.41 |
Anhui | −1.56 | −12.99 | −7.07 | −16.83 | −36.39 | 0.00 | 32.54 | −13.50 |
Ningxia | −6.95 | −36.29 | −0.06 | −0.68 | −40.35 | −39.18 | 7.37 | −28.16 |
Hunan | −18.90 | 0.00 | −16.08 | −0.91 | −30.11 | 0.00 | 24.74 | −42.91 |
Jiangxi | −2.46 | −3.58 | −37.20 | −8.39 | −17.52 | −1.55 | 21.55 | −58.05 |
Gansu | −51.06 | −4.66 | −73.08 | −70.85 | −6.34 | −8.55 | 11.45 | 0.00 |
Time Span | β-Value | p-Value | Adjusted R2 |
---|---|---|---|
2009–2014 | −0.1097 | 0.000 | 0.4000 |
2015–2019 | −0.0275 | 0.228 | 0.0496 |
2009–2019 | −0.0630 | 0.000 | 0.4317 |
Period | β-Value | p-Value | Adjusted R2 |
---|---|---|---|
2009–2014 | −0.3846 | 0.001 | 0.6178 |
2015–2019 | −0.4129 | 0.000 | 0.6561 |
2009–2019 | −0.3650 | 0.010 | 0.5226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, G.; Xing, X.; Cong, G.; Yang, X. Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach. Int. J. Environ. Res. Public Health 2023, 20, 583. https://doi.org/10.3390/ijerph20010583
Qiu G, Xing X, Cong G, Yang X. Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach. International Journal of Environmental Research and Public Health. 2023; 20(1):583. https://doi.org/10.3390/ijerph20010583
Chicago/Turabian StyleQiu, Guijie, Xiaonan Xing, Guanqiao Cong, and Xinyu Yang. 2023. "Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach" International Journal of Environmental Research and Public Health 20, no. 1: 583. https://doi.org/10.3390/ijerph20010583
APA StyleQiu, G., Xing, X., Cong, G., & Yang, X. (2023). Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach. International Journal of Environmental Research and Public Health, 20(1), 583. https://doi.org/10.3390/ijerph20010583