A COVID-19 Outbreak in a Large Meat-Processing Plant in England: Transmission Risk Factors and Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outbreak Identification and Recruitment
2.2. Case Definition and Identification
2.3. Environmental Assessment, Including Real-Time Environmental Measurements
2.4. Surface Microbial Sampling
3. Results
3.1. The Outbreak and the Attack Rates
3.2. Observational Environmental Assessment Results
3.3. Measurement Results for Ventilation (CO2), Temperature and Humidity
3.4. Surface Microbial Sample Results
4. Discussion
4.1. Context
4.2. Noise
4.3. Ventilation
4.4. Temperature and Humidity
4.5. Face Coverings
4.6. Surface Contamination
4.7. Night-Shift Work
4.8. Multi-Layered Control Measures
4.9. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Marr, L.C.; Tang, J.W. A Paradigm Shift to Align Transmission Routes With Mechanisms. Clin. Infect. Dis. 2021, 73, 1747–1749. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Kennedy, E.D.; Basler, C.; Grant, M.P.; Jacobs, J.P.; Ortbahn, D.; Osburn, J.; Saydah, S.; Tomasi, S.; Clayton, J.L. COVID-19 Outbreak among Employees at a Meat Processing Facility—South Dakota, March–April 2020. MMWR-Morb. Mortal. Wkly. Rep. 2020, 69, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhou, H.; Meng, N.X.; Yu, X.; Wang, X.; Wang, T.; Zhang, J.F.; Wang, Y.; Li, S.E.; Guo, S.Z.; et al. A COVID-19 Outbreak Emerging in a Food Processing Company—Harbin City, Heilongjiang Province, China, January–February 2021. China CDC Wkly. 2021, 3, 681–687. [Google Scholar]
- Mallet, Y.; Pivette, M.; Revest, M.; Angot, E.; Valence, M.; Dupin, C.; Picard, N.; Brelivet, G.; Seyler, T.; Ballet, S.; et al. Identification of Workers at Increased Risk of Infection during a COVID-19 Outbreak in a Meat Processing Plant, France, May 2020. Food Environ. Virol. 2021, 13, 535–543. [Google Scholar] [CrossRef]
- Pokora, R.; Kutschbach, S.; Weigl, M.; Braun, D.; Epple, A.; Lorenz, E.; Grund, S.; Hecht, J.; Hollich, H.; Rietschel, P.; et al. Investigation of superspreading COVID-19 outbreak events in meat and poultry processing plants in Germany: A cross-sectional study. PLoS ONE 2021, 16, e0242456. [Google Scholar] [CrossRef] [PubMed]
- Walshe, N.; Fennelly, M.; Hellebust, S.; Wenger, J.; Sodeau, J.; Prentice, M.; Grice, C.; Jordan, V.; Comerford, J.; Downey, V.; et al. Assessment of Environmental and Occupational Risk Factors for the Mitigation and Containment of a COVID-19 Outbreak in a Meat Processing Plant. Front. Public Health 2021, 9, 769238. [Google Scholar] [CrossRef]
- Dyal, J.W.; Grant, M.P.; Broadwater, K.; Bjork, A.; Waltenburg, M.A.; Gibbins, J.D.; Hale, C.; Silver, M.; Fischer, M.; Steinberg, J.; et al. COVID-19 Among Workers in Meat and Poultry Processing Facilities-19 States, April 2020. MMWR-Morb. Mortal. Wkly. Rep. 2020, 69, 557–561. [Google Scholar] [CrossRef]
- Waltenburg, M.A.; Victoroff, T.; Rose, C.E.; Butterfield, M.; Jervis, R.H.; Fedak, K.M.; Gabel, J.A.; Feldpausch, A.; Dunne, E.M.; Austin, C.; et al. Update: COVID-19 Among Workers in Meat and Poultry Processing Facilities—United States, April–May 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 887–892. [Google Scholar] [CrossRef]
- Taylor, C.A.; Boulos, C.; Almond, D. Livestock plants and COVID-19 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 31706–31715. [Google Scholar] [CrossRef]
- Ijaz, M.; Yar, M.K.; Badar, I.H.; Ali, S.; Islam, M.S.; Jaspal, M.H.; Hayat, Z.; Sardar, A.; Ullah, S.; Guevara-Ruiz, D. Meat Production and Supply Chain Under COVID-19 Scenario: Current Trends and Future Prospects. Front. Vet. Sci. 2021, 8, 432. [Google Scholar] [CrossRef]
- BMPA. Meat Industry Workforce, Published by British Meat Processors Association (BMPA) 2022. Available online: https://britishmeatindustry.org/industry/workforce/ (accessed on 1 December 2022).
- DEFRA. National Statistics Chapter 8: Livestock, Published by Department for Environment Food & Rural Affairs (DEFRA). 21 October 2022. Available online: https://www.gov.uk/government/statistics/agriculture-in-the-united-kingdom-2021/chapter-8-livestock (accessed on 1 December 2022).
- Clayson, A.; Lewis, C.; Ubido, J.; Daniels, S.; McElvenny, D.; Hosseini, P.; Dhakal, S.; Hussain, M.; Van-Taongeren, M.; Chen, Y. National Core Study Report: A Systematic Review of Risk Factors for Workplace Outbreaks of COVID-19. 29 November 2022. Available online: https://sites.manchester.ac.uk/covid19-national-project/2022/11/29/systematic-review-of-risk-factors-for-workplace-outbreaks-of-covid-19/ (accessed on 15 December 2022).
- Gunther, T.; Czech-Sioli, M.; Indenbirken, D.; Robitaille, A.; Tenhaken, P.; Exner, M.; Ottinger, M.; Fischer, N.; Grundhoff, A.; Brinkmann, M.M. SARS-CoV-2 outbreak investigation in a German meat processing plant. EMBO Mol. Med. 2020, 12, e13296. [Google Scholar] [CrossRef] [PubMed]
- SAGE-EMG. Role of Ventilation in Controlling SARS-CoV-2 Transmission, Prepared by the Environmental and Modelling group (EMG) of the UK Scientific Advisory Group for Emergencies (SAGE). 30 September 2020. Available online: https://www.gov.uk/government/publications/emg-role-of-ventilation-in-controlling-sars-cov-2-transmission-30-september-2020 (accessed on 15 November 2022).
- PROTECT COVID-19 National Core Study, Theme 1: Outbreak Investigations. Available online: https://sites.manchester.ac.uk/covid19-national-project/research-themes/rapid-investigation-of-outbreaks-and-evidence-synthesis/ (accessed on 15 December 2022).
- Raja, A.I.; van Veldhoven, K.; Ewuzie, A.; Frost, G.; Sandys, V.; Atkinson, B.; Nicholls, I.; Graham, A.; Higgins, H.; Coldwell, M.; et al. Investigation of a SARS-CoV-2 Outbreak at an Automotive Manufacturing Site in England. Int. J. Environ. Res. Public Health 2022, 19, 6400. [Google Scholar] [CrossRef]
- Graham, A.; Raja, A.I.; van Veldhoven, K.; Nicholls, G.; Simpson, A.; Atkinson, B.; Nicholls, I.; Higgins, H.; Cooke, J.; Bennett, A.; et al. A SARS-CoV-2 outbreak in a plastics manufacturing plant. BMC Public Health 2023, 23, 1077. [Google Scholar] [CrossRef]
- Atkinson, B.; van Veldhoven, K.; Nicholls, I.; Coldwell, M.; Clarke, A.; Frost, G.; Atchison, C.J.; Raja, A.I.; Bennett, A.M.; Morgan, D.; et al. An outbreak of SARS-CoV-2 in a public-facing office in England, 2021. medRxiv 2022. [Google Scholar] [CrossRef]
- Chen, Y.; Atchison, C.; Atkinson, B.; Barber, C.; Bennett, A.; Brickley, E.; Cooke, J.; Dabrera, G.; Fishwick, D.; Fletcher, T.; et al. The COVID-OUT study protocol: COVID-19 outbreak investigation to understand workplace SARS-CoV-2 transmission in the United Kingdom [version 1; peer review: Awaiting peer review]. Wellcome Open Res. 2021, 6, 201. [Google Scholar] [CrossRef]
- WHO. The First Few X Cases and Contacts (FFX) Investigation Protocol for Coronavirus Disease 2019 (COVID-19), Version 2.2. World Health Organization (WHO) Technical Guidance; WHO Reference Number: WHO/2019-nCoV/FFXprotocol/2020.3. 23 February 2020. Available online: https://www.who.int/publications/i/item/the-first-few-x-cases-and-contacts-(-ffx)-investigation-protocol-for-coronavirus-disease-2019-(-covid-19)-version-2.2 (accessed on 15 October 2020).
- WHO. Assessment of Risk Factors for Coronavirus Disease 2019 (COVID-19) in Health Workers: Protocol for a Case-Control Study, Version 1.0. World Health Organization (WHO) Technical Guidance; WHO Reference Number: WHO/2019-nCoV/HCW_RF_CaseControlProtocol/2020.1. 26 May 2020. Available online: https://www.who.int/publications/i/item/assessment-of-risk-factors-for-coronavirus-disease-2019-(covid-19)-in-health-workers-protocol-for-a-case-control-study (accessed on 15 October 2020).
- WHO. Population-Based Age-Stratified Seroepidemiological Investigation Protocol for Coronavirus 2019 (COVID-19) Infection, Version 2.0. World Health Organization (WHO) Technical Guidance; WHO Reference Number: WHO/2019-nCoV/Seroepidemiology/2020.2. 26 May 2020. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 (accessed on 15 October 2020).
- WHO. Surface Sampling of Coronavirus Disease (COVID-19): A Practical “How to” Protocol for Health Care and Public Health Professionals, Version 1.0. World Health Organization (WHO) Technical Guidance; WHO reference number: WHO/2019-nCoV/Environment_protocol/2020.1. 18 February 2020. Available online: https://www.who.int/publications/i/item/surface-sampling-of-coronavirus-disease-(-covid-19)-a-practical-how-to-protocol-for-health-care-and-public-health-professionals (accessed on 15 October 2020).
- Cori, A.; Donnelly, C.A.; Dorigatti, I.; Ferguson, N.M.; Fraser, C.; Garske, T.; Jombart, T.; Nedjati-Gilani, G.; Nouvellet, P.; Riley, S.; et al. Key data for outbreak evaluation: Building on the Ebola experience. Philos. Trans. R. Soc. B-Biol. Sci. 2017, 372, 20160371. [Google Scholar] [CrossRef] [PubMed]
- Polonsky, J.A.; Baidjoe, A.; Kamvar, Z.N.; Cori, A.; Durski, K.; Edmunds, W.J.; Eggo, R.M.; Funk, S.; Kaiser, L.; Keating, P.; et al. Outbreak analytics: A developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180276. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software, StataCorp LLC: College Station, TX, USA, 2021.
- CDC. Principles of Epidemiology in Public Health Practice. 2012. Available online: https://www.cdc.gov/csels/dsepd/ss1978/glossary.html (accessed on 15 May 2021).
- Keen, C.; Sandys, V.; Simpson, A.; Chen, Y. Environmental Assessment Data Collection Framework—COVID-OUT study. Open Sci. Framew. (OSF) 2021. [Google Scholar] [CrossRef]
- CIBSE. CIBSE (Chartered Institution of Building Services Engineers) COVID-19 Ventilation Guidance. Version 5. 16 July 2021. Available online: https://www.cibse.org/emerging-from-lockdown (accessed on 1 August 2021).
- Nicholls, I.; Spencer, A.; Chen, Y.; Bennett, A.; Atkinson, B. Surface sampling for SARS-CoV-2 in workplace outbreak settings in the UK, 2021-22. medRxiv 2023. [Google Scholar] [CrossRef]
- Government of United Kingdom: Daily Summary: Coronavirus (COVID-19) in the UK. Available online: https://coronavirus.data.gov.uk/ (accessed on 1 March 2022).
- Brown, J.; Ferguson, D.; Barber, S. Research Briefing—Coronavirus: The Lockdown Laws; Parliament, U.K., Ed.; House of Commons Library: London, UK, 2022; Available online: https://researchbriefings.files.parliament.uk/documents/CBP-9068/CBP-9068.pdf (accessed on 1 May 2022).
- Schwela, D.H. The new World Health Organization guidelines for community noise. Noise Control. Eng. J. 2001, 49, 193–198. [Google Scholar] [CrossRef]
- Kopechek, J.A. Increased ambient noise and elevated vocal effort contribute to airborne transmission of COVID-19. J. Acoust. Soc. Am. 2020, 148, 3255–3257. [Google Scholar] [CrossRef] [PubMed]
- Oswin, H.P.; Haddrell, A.E.; Otero-Fernandez, M.; Mann, J.F.S.; Cogan, T.A.; Hilditch, T.G.; Tian, J.H.; Hardy, D.A.; Hill, D.J.; Finn, A.; et al. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. USA 2022, 119, e2200109119. [Google Scholar] [CrossRef]
- HSE. Ventilation in the Workplace, HSE Guidance. Available online: https://www.hse.gov.uk/ventilation/overview.htm (accessed on 1 December 2022).
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, E10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, Q.Q.; Zhao, L.; Long, E.S. Decay characteristics of aerosolized viruses in the air and control strategy of thermal and humid environment for epidemic prevention. Indoor Built Environ. 2022, 31, 1287–1305. [Google Scholar] [CrossRef]
- Walker, M.D.; Vincent, J.C.; Benson, L.; Stone, C.A.; Harris, G.; Ambler, R.E.; Watts, P.; Slatter, T.; López-García, M.; King, M.F.; et al. Effect of Relative Humidity on Transfer of Aerosol-Deposited Artificial and Human Saliva from Surfaces to Artificial Finger-Pads. Viruses 2022, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- EMG. Role of Screens and Barriers in Mitigating COVID-19 Transmission by Environmental Modelling Group (EMG). Available online: https://www.gov.uk/government/publications/emg-role-of-screens-and-barriers-in-mitigating-covid-19-transmission-1-july-2021 (accessed on 1 December 2022).
- Burridge, H.C.; Bhagat, R.K.; Stettler, M.E.J.; Kumar, P.; De Mel, I.; Demis, P.; Hart, A.; Johnson-Llambias, Y.; King, M.F.; Klymenko, O.; et al. The ventilation of buildings and other mitigating measures for COVID-19: A focus on wintertime. Proc. R. Soc. a-Math. Phys. Eng. Sci. 2021, 477, 20200855. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, W.G.; Blachere, F.M.; Law, B.F.; Beezhold, D.H.; Noti, J.D. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. Aerosol Sci. Technol. 2021, 55, 449–457. [Google Scholar] [CrossRef]
- Van der Sande, M.; Teunis, P.; Sabel, R. Professional and Home-Made Face Masks Reduce Exposure to Respiratory Infections among the General Population. PLoS ONE 2008, 3, e2618. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Dung, T.C.; Chughtai, A.A.; Seale, H.; Rahman, B. Contamination and washing of cloth masks and risk of infection among hospital health workers in Vietnam: A post hoc analysis of a randomised controlled trial. BMJ Open 2020, 10, e042045. [Google Scholar] [CrossRef]
- Ataei, M.; Shirazi, F.M.; Nakhaee, S.; Abdollahi, M.; Mehrpour, O. Assessment of cloth masks ability to limit Covid-19 particles spread: A systematic review. Environ. Sci. Pollut. Res. 2022, 29, 1645–1676. [Google Scholar] [CrossRef]
- Harvey, A.P.; Fuhrmeister, E.R.; Cantrell, M.; Pitol, A.K.; Swarthout, J.M.; Powers, J.E.; Nadimpalli, M.L.; Julian, T.R.; Pickering, A.J. Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. Environ. Sci. Technol. Lett. 2021, 8, 168–175. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.M.T.; Sikkema, R.S.; Bouwknegt, M.; De Geus, Y.; Stanoeva, K.; Nieuwenweg, S.J.; Raben, C.; Dohmen, W.; Heederik, D.J.J.; Reusken, C.; et al. Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters. Eur. Respir. J. 2021, 58, 21259212. [Google Scholar]
- Maidstone, R.; Anderson, S.G.; Ray, D.W.; Rutter, M.K.; Durrington, H.J.; Blaikley, J.F. Shift work is associated with positive COVID-19 status in hospitalised patients. Thorax 2021, 76, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Herstein, J.J.; Degarege, A.; Stover, D.; Austin, C.; Schwedhelm, M.M.; Lawler, J.V.; Lowe, J.J.; Ramos, A.K.; Donahue, M. Characteristics of SARS-CoV-2 Transmission among Meat Processing Workers in Nebraska, USA, and Effectiveness of Risk Mitigation Measures. Emerg. Infect. Dis. 2021, 27, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Waltenburg, M.A.; Rose, C.E.; Victoroff, T.; Butterfield, M.; Dillaha, J.A.; Heinzerling, A.; Chuey, M.; Fierro, M.; Jervis, R.H.; Fedak, K.M.; et al. Coronavirus Disease among Workers in Food Processing, Food Manufacturing, and Agriculture Workplaces. Emerg. Infect. Dis. 2021, 27, 243–249. [Google Scholar] [CrossRef]
- Finci, I.; Siebenbaum, R.; Richtzenhain, J.; Edwards, A.; Rau, C.; Ehrhardt, J.; Koiou, L.; Joggerst, B.; Brockmann, S.O. Risk factors associated with an outbreak of COVID-19 in a meat processing plant in southern Germany, April to June 2020. Eurosurveillance 2022, 27, 2100354. [Google Scholar] [CrossRef]
- Barnewall, R.E.; Bischoff, W.E. Removal of SARS-CoV-2 bioaerosols using ultraviolet air filtration. Infect. Control Hosp. Epidemiol. 2021, 42, 1014–1015. [Google Scholar] [CrossRef]
- Ingram, C.; Downey, V.; Roe, M.; Chen, Y.B.; Archibald, M.; Kallas, K.A.; Kumar, J.; Naughton, P.; Uteh, C.O.; Rojas-Chaves, A.; et al. COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7847. [Google Scholar] [CrossRef]
- Rutter, H.; Parker, S.; Stahl-Timmins, W.; Noakes, C.; Smyth, A.; Macbeth, R.; Fitzgerald, S.; Freeman, A.L.J. Visualising SARS-CoV-2 transmission routes and mitigations. BMJ-Br. Med. J. 2021, 375, e065312. [Google Scholar] [CrossRef]
- ASTM. Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation, American Society for Testing and Materials (ASTM), in Method D625-18. American National Standards Institute (ANSI), 2018. Available online: https://webstore.ansi.org/standards/astm/astmd624518 (accessed on 1 August 2021).
RT-PCR Results (From a Total of 60 Samples) | Level of RNA (Based on Ct Value) | ||||
---|---|---|---|---|---|
Confirm Positive | Suspected Positive | Negative | Moderate-High (Ct < 32.0) | Low (Ct 32.0–34.9) | Very Low-None (Ct ≥ 35.0 a) |
1 (1.7%) | 6 (10.0%) | 53 (88.3%) | 0 (0.0%) | 1 (1.7%) | 59 (98.3%) |
Positive sample information | |||||
Site area | Location in area | Mean Ct value b | Estimated copies per cm2 c | ||
Engineering | Toolbox cupboard-door and 2 shelves | 34.0 | 1007 | ||
Engineering | Toolbox cupboard-top of cupboard | 37.9 d | 40 | ||
Engineering | Tool drawers | 36.5 d | 240 | ||
Chiller 1 | OCM screen | 37.9 d | 14 | ||
Mission control | Dehumidifier | 38.0 d | 34 | ||
Smoking shelter | Chair | 37.5 d | 102 | ||
Canteen | Table top and seat | 37.7 d | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Beattie, H.; Simpson, A.; Nicholls, G.; Sandys, V.; Keen, C.; Curran, A.D. A COVID-19 Outbreak in a Large Meat-Processing Plant in England: Transmission Risk Factors and Controls. Int. J. Environ. Res. Public Health 2023, 20, 6806. https://doi.org/10.3390/ijerph20196806
Chen Y, Beattie H, Simpson A, Nicholls G, Sandys V, Keen C, Curran AD. A COVID-19 Outbreak in a Large Meat-Processing Plant in England: Transmission Risk Factors and Controls. International Journal of Environmental Research and Public Health. 2023; 20(19):6806. https://doi.org/10.3390/ijerph20196806
Chicago/Turabian StyleChen, Yiqun, Helen Beattie, Andrew Simpson, Gillian Nicholls, Vince Sandys, Chris Keen, and Andrew D. Curran. 2023. "A COVID-19 Outbreak in a Large Meat-Processing Plant in England: Transmission Risk Factors and Controls" International Journal of Environmental Research and Public Health 20, no. 19: 6806. https://doi.org/10.3390/ijerph20196806
APA StyleChen, Y., Beattie, H., Simpson, A., Nicholls, G., Sandys, V., Keen, C., & Curran, A. D. (2023). A COVID-19 Outbreak in a Large Meat-Processing Plant in England: Transmission Risk Factors and Controls. International Journal of Environmental Research and Public Health, 20(19), 6806. https://doi.org/10.3390/ijerph20196806