Benefits in Cardiac Function from a Remote Exercise Program in Children with Obesity
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Methods
2.2.1. Auxological Evaluation
2.2.2. Cardiologic Assessment
2.2.3. Physical Fitness (PF) Tests
2.2.4. Training Protocol
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 November 2022).
- Qasim, A.; Turcotte, M.; de Souza, R.J.; Samaan, M.C.; Champredon, D.; Dushoff, J.; Speakman, J.R.; Meyre, D. On the origin of obesity: Identifying the biological, environmental, and cultural drivers of genetic risk among human populations. Obes. Rev. 2018, 19, 121–149. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, M.; Birken, C.; Hamilton, J. Childhood obesity: Causes, consequences, and management. Pediatr. Clin. N. Am. 2015, 62, 821–840. [Google Scholar] [CrossRef]
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Family Med. Prim. Care 2015, 4, 187–192. [Google Scholar] [CrossRef]
- Barnett, T.; Kelly, C.; Young, D.; Perry, C.; Pratt, C.; Edwards, N.; Rao, G.; Vos, M. Sedentary Behaviors in Today’s Youth: Approaches to the Prevention and Management of Childhood Obesity: A Scientific Statement From the American Heart Association. Circulation 2018, 38, e142–e159. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.J.; Mackenzie-Rife, K.A.; Witmans, M.B.; Montgomery, M.D.; Ball, G.D.; Egbogah, S.; Eves, N.D. Obesity negatively impacts lung function in children and adolescents. Pediatr Pulmonol. 2014, 49, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Mafort, T.T.; Rufino, R.; Costa, C.H.; Lopes, A.J. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip. Respir. Med. 2016, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Topçu, S.; Orhon, F.S.; Tayfun, M.; Uçaktürk, S.A.; Demirel, F. Anxiety, depression, and self-esteem levels in obese children: A case-control study. J. Pediatr. Endocrinol. Metabol. 2016, 29, 357–361. [Google Scholar] [CrossRef]
- Daniels, S.R. Complications of obesity in children and adolescents. Int. J. Obes. 2009, 33 (Suppl. 1), S60–S65. [Google Scholar] [CrossRef] [Green Version]
- Cote, A.T.; Harris, K.C.; Panagiotopoulos, C.; Sandor, G.G.; Devlin, A.M. Childhood obesity and cardiovascular dysfunction. J. Am. Coll Cardiol. 2013, 62, 1309–1319. [Google Scholar] [CrossRef]
- Acree, L.S.; Comp, P.C.; Whitsett, T.L.; Montgomery, P.S.; Nickel, K.J.; Fjeldstad, A.S.; Fjeldstad, C.; Gardner, A.W. The influence of obesity on calf blood flow and vascular reactivity in older adults. Dyn. Med. 2007, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Alpert, M.A. Obesity cardiomyopathy: Pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 2001, 321, 225–236. [Google Scholar] [CrossRef]
- Lobato, N.S.; Filgueira, F.P.; Akamine, E.H.; Tostes, R.C.; Carvalho, M.H.; Fortes, Z.B. Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz. J. Med. Biol. Res. 2012, 45, 392–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasan, R.S. Cardiac function and obesity. Heart 2003, 89, 1127–1129. [Google Scholar] [CrossRef]
- Mehta, S.K.; Richards, N.; Lorber, R.; Rosenthal, G.L. Abdominal obesity, waist circumference, body mass index, and echocardiographic measures in children and adolescents. Congenit. Heart Dis. 2009, 4, 338–347. [Google Scholar] [CrossRef]
- Ozdemir, O.; Hizli, S.; Abaci, A.; Agladioglu, K.; Aksoy, S. Echocardiographic measurement of epicardial adipose tissue in obese children. Pediatr. Cardiol. 2010, 31, 853–860. [Google Scholar] [CrossRef]
- Dhuper, S.; Abdullah, R.A.; Weichbrod, L.; Mahdi, E.; Cohen, H.W. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity 2011, 19, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.R.; Waggoner, A.D.; Schechtman, K.B.; Meyer, T.; Gropler, R.J.; Barzilai, B.; Dávila-Román, V.G. Alterations in left ventricular structure and function in young healthy obese women: Assessment by echocardiography and tissue Doppler imaging. J. Am. Coll. Cardiol. 2004, 43, 1399–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.Y.; O’Moore-Sullivan, T.; Leano, R.; Byrne, N.; Beller, E.; Marwick, T.H. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 2004, 110, 3081–3087. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.; Bennett, H.; Bezak, E.; Perry, R.; Boyle, T. The effect of exercise on left ventricular global longitudinal strain. Eur. J. Appl. Physiol. 2022, 12, 1397–1408. [Google Scholar] [CrossRef]
- Daniels, S.R.; Jacobson, M.S.; McCrindle, B.W.; Eckel, R.H.; Sanner, B.M. American Heart Association Childhood Obesity Research Summit Report. Circulation 2009, 119, e489–e517. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, V.; Zuccotti, G. Physical Exercise as a Non-Pharmacological Intervention for Attenuating Obesity-Related Complications in Children and Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 5046. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, Y.W.; Kim, H.S.; Lee, S.Y.; Jeong, H.S.; Suh, S.H.; Park, J.K.; Jung, J.W.; Kim, N.S.; Noh, C.I.; et al. The effects of an exercise program on anthropometric, metabolic, and cardiovascular parameters in obese children. Korean Circ. J. 2010, 40, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Blüher, S.; Petroff, D.; Wagner, A.; Warich, K.; Gausche, R.; Klemm, T.; Wagner, M.; Keller, A. The one year exercise and lifestyle intervention program KLAKS: Effects on anthropometric parameters, cardiometabolic risk factors and glycemic control in childhood obesity. Metab. Clin. Exp. 2014, 63, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Genoni, G.; Menegon, V.; Monzani, A.; Archero, F.; Tagliaferri, F.; Mancioppi, V.; Peri, C.; Bellone, S.; Prodam, F. Healthy Lifestyle Intervention and Weight Loss Improve Cardiovascular Dysfunction in Children with Obesity. Nutrients 2021, 13, 1301. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.R.; Andersen, L.J.; Rebelo, A.N.; Brito, J.; Hornstrup, T.; Schmidt, J.F.; Jackman, S.R.; Mota, J.; Rêgo, C.; Oliveira, J.; et al. Cardiovascular effects of 3 months of football training in overweight children examined by comprehensive echocardiography: A pilot study. J. Sports Sci. 2013, 31, 1432–1440. [Google Scholar] [CrossRef]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.; Qiao, M.; Leung, S.S.; Lam, C.W.; Metreweli, C.; Celermajer, D.S. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 2004, 109, 1981–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcaterra, V.; Palombo, C.; Malacarne, M.; Pagani, M.; Federico, G.; Kozakova, M.; Zuccotti, G.; Lucini, D. Interaction between Autonomic Regulation, Adiposity Indexes and Metabolic Profile in Children and Adolescents with Overweight and Obesity. Children 2021, 8, 686. [Google Scholar] [CrossRef]
- World Health Organization. Child Growth Standards. 2006. Available online: https://www.who.int/tools/child-growth-standards (accessed on 1 November 2022).
- Maffeis, C.; Banzato, C.; Talamini, G. Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J. Pediatr. 2008, 152, 207–213. [Google Scholar] [CrossRef]
- Lopez, L.; Colan, S.D.; Frommelt, P.C.; Ensing, G.J.; Kendall, K.; Younoszai, A.K.; Lai, W.W.; Geva, T. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 2010, 23, 465–495; quiz 576–577. [Google Scholar] [CrossRef]
- Foster, B.J.; Mackie, A.S.; Mitsnefes, M.; Ali, H.; Mamber, S.; Colan, S.D. A novel method of expressing left ventricular mass relative to body size in children. Circulation 2008, 117, 2769–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, M.D.; Du, W.; Skeens, M.E.; Humes, R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: An echocardiographic study. J. Am. Soc. Echocardiogr. 2008, 21, 922–934. [Google Scholar] [CrossRef]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardissino, G.; Ghiglia, S.; Salice, P.; Perrone, M.; Piantanida, S.; De Luca, F.L.; Di Michele, S.; Filippucci, L.; Dardi, E.R.A.; Bollani, T.; et al. Multiple office blood pressure measurement: A novel approach to overcome the weak cornerstone of blood pressure measurement in children. Data from the SPA project. Pediatr. Nephrol. 2020, 35, 687–693. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Vandoni, M.; Correale, L.; Puci, M.V.; Galvani, C.; Codella, R.; Togni, F.; La Torre, A.; Casolo, F.; Passi, A.; Orizio, C.; et al. Six minute walk distance and reference values in healthy Italian children: A cross-sectional study. PLoS ONE 2018, 13, e0205792. [Google Scholar] [CrossRef]
- Carnevale Pellino, V.; Giuriato, M.; Ceccarelli, G.; Codella, R.; Vandoni, M.; Lovecchio, N.; Nevill, A.M. Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation. Appl. Sci. 2020, 10, 6430. [Google Scholar] [CrossRef]
- Fernandez-Santos, J.R.; Ruiz, J.R.; Cohen, D.D.; Gonzalez-Montesinos, J.L.; Castro-Piñero, J. Reliability and Validity of Tests to Assess Lower-Body Muscular Power in Children. J. Strength Cond Res. 2015, 29, 2277–2285. [Google Scholar] [CrossRef]
- Donncha, C.M.; Watson, A.W.S.; McSweeney, T.; O’Donovan, D.J. Reliability of Eurofit Physical Fitness Items for Adolescent Males with and without Mental Retardation. Adapt. Phys. Act. Q. 1999, 16, 86–95. [Google Scholar] [CrossRef]
- Tomkinson, G.; Olds, T. Field tests of fitness. In Paediatric Exercise Science and Medicine, 2nd ed.; Armstrong, N., Van Mechelen, W., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 109–128. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela- Rejón, M.J.; Mora, J.; et al. Field-Based Fitness Assessment in Young People: The ALPHA Health-Related Fitness Test Battery for Children and Adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Vandoni, M.; Carnevale Pellino, V.; Gatti, A.; Lucini, D.; Mannarino, S.; Larizza, C.; Rossi, V.; Tranfaglia, V.; Pirazzi, A.; Biino, V.; et al. Effects of an Online Supervised Exercise Training in Children with Obesity during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 9421. [Google Scholar] [CrossRef] [PubMed]
- Lamb, K.L. Children’s Ratings of Effort during Cycle Ergometry: An Examination of the Validity of Two Effort Rating Scales. Pediatric Exerc. Sci. 1995, 7, 407–421. [Google Scholar] [CrossRef]
- Meng, C.; Yucheng, T.; Shu, L.; Yu, Z. Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: A randomized controlled trial. BMC Pediatr. 2022, 22, 112. [Google Scholar] [CrossRef]
- Schwingshandl, J.; Sudi, K.; Eibl, B.; Wallner, S.; Borkenstein, M. Effect of an individualised training programme during weight reduction on body composition: A randomised trial. Arch. Dis. Child. 1999, 81, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Son, W.M.; Sung, K.D.; Bharath, L.P.; Choi, K.J.; Park, S.Y. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin. Exp. Hypertens. 2017, 39, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.C.; Kwok, C.F. Exercise reduces body fat and improves insulin sensitivity and pancreatic β-cell function in overweight and obese male Taiwanese adolescents. BMC Pediatr. 2018, 18, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Ferrante, A.W., Jr. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007, 262, 408–414. [Google Scholar] [CrossRef]
- Tian, D.; Meng, J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxidative Med. Cell. Longev. 2019, 2019, 3756750. [Google Scholar] [CrossRef] [Green Version]
- Niemiro, G.M.; Rewane, A.; Algotar, A.M. Exercise and Fitness Effect On Obesity. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539893. (accessed on 5 January 2023).
- Krawczewski Carhuatanta, K.A.; Demuro, G.; Tschöp, M.H.; Pfluger, P.T.; Benoit, S.C.; Obici, S. Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity. Endocrinology 2011, 152, 2655–2664. [Google Scholar] [CrossRef]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis, treatment and prevention of pediatric obesity: Consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wright, L.; Negishi, T.; Negishi, K.; Liu, J.; Marwick, T.H. Research to Practice: Assessment of Left Ventricular Global Longitudinal Strain for Surveillance of Cancer Chemotherapeutic-Related Cardiac Dysfunction. JACC Cardiovasc Imaging 2018, 11, 1196–1201. [Google Scholar] [CrossRef]
- Soare, R.; Brasil, I.; Monteiro, W.; Farinatti, P. Effects of physical activity on body mass and composition of school-age children and adolescents with overweight or obesity: Systematic review focusing on intervention characteristics. J. Bodyw. Mov. Ther. 2023, 33, 154–163. [Google Scholar] [CrossRef]
- Cvetković, N.; Stojanović, E.; Stojiljković, N.; Nikolić, D.; Scanlan, A.T.; Milanović, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand J. Med. Sci. Sports 2018, 28, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Valeriani, F.; Protano, C.; Marotta, D.; Liguori, G.; Romano Spica, V.; Valerio, G.; Vitali, M.; Gallè, F. Exergames in Childhood Obesity Treatment: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4938. [Google Scholar] [CrossRef]
- Powell, B.D.; Redfield, M.M.; Bybee, K.A.; Freeman, W.K.; Rihal, C.S. Association of obesity with left ventricular remodeling and diastolic dysfunction in patients without coronary artery disease. Am. J. Cardiol. 2006, 98, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.D.; Litwin, S.E.; Sweeney, G. Cardiac remodeling in obesity. Physiol. Rev. 2008, 88, 389–419. [Google Scholar] [CrossRef] [PubMed]
- Obert, P.; Mandigout, S.; Vinet, A.; N’Guyen, L.D.; Stecken, F.; Courteix, D. Effect of aerobic training and detraining on left ventricular dimensions and diastolic function in prepubertal boys and girls. Int. J. Sports Med. 2001, 22, 90–96. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujino, M.; Shindo, M.; Hiroki, T.; Arakawa, K. Echocardiographic and electrocardiographic measures in obese children after an exercise program. Int. J. Obes. 1987, 11, 465–472. [Google Scholar]
- Krustrup, P.; Hansen, P.R.; Nielsen, C.M.; Larsen, M.N.; Randers, M.B.; Manniche, V.; Hansen, L.; Dvorak, J.; Bangsbo, J. Structural and functional cardiac adaptations to a 10-week school-based football intervention for 9–10-year-old children. Scand. J. Med. Sci. Sport. 2014, 24, 4–9. [Google Scholar] [CrossRef]
Baseline Characteristics | Time T0 | Time T1 |
---|---|---|
Patient numbers (n) | 27 | 27 |
Age (years) | 11.0 ± 2.0 | 11.2 ± 2.0 |
Gender | - | |
Male, n (%) | 18 (67) | |
Female, n (%) | 9 (33) | |
Pubertal stages | ||
Prepubertal, n (%) | 16 (59.3) | 14 (51.8) |
Middle puberty, n (%) | 5 (18.5) | 7 (25.9) |
Late puberty, n (%) | 6 (22.2) | 6 (22.2) |
Ethnicity | - | |
White, non-Hispanic, n (%) | 17 (63) | |
Afroamerican, n (%) | 4 (15) | |
Hispanic or Latino, n (%) | 6 (22) | |
Weight, kg | 65.57 ± 11.03 | 66.56 ± 10.89 |
Weight, z-score | 1.97 ± 0.22 | 1.97 ± 0.52 |
Height, cm | 149.9 ± 6.58 | 152.1 ± 4.95 |
Height, z-score | 0.48 ± 1.2 | 0.59 ± 1.4 |
Body mass index, kg/m2 | 26.3 ± 0.6 | 26.0 ± 1.4 |
Body mass index, z-score | 2.16 ± 0.5 | 2.03 ± 0.6 |
Waist circumference, cm | 90.5 ± 11.2 | 88.6 ± 10.8 |
Waist circumference/height ratio | 0.61 ± 0.05 | 0.58 ± 0.04 |
Parameters | T0 | T1 | p-Value |
---|---|---|---|
Systolic pressure (mmHg) | |||
Mean (±SD) | 117.0 ± 9.7 | 113.6 ± 10.3 | 0.05 |
Z-score, mean (±SD) | 1.15 ± 0.84 | 0.82 ± 0.93 | 0.027 |
Centiles (±SD) | 80.89 ± 17.82 | 72.44 ± 23.44 | 0.063 |
Diastolic pressure (mmHg) | |||
Mean (±SD) | 69.3 ± 8.1 | 64.0 ± 7.0 | 0.001 |
Z-score, mean (±SD) | 0.68 ± 0.67 | 0.16 ± 0.57 | <0.001 |
Centiles (±SD) | 70.07 ± 21.09 | 55.56 ± 20.31 | 0.001 |
Mean arterial pressure (mmHg) | |||
Mean (±SD) | 85.2 ± 7.9 | 80.5 ± 7.4 | 0.002 |
Echocardiographic Variables | T0 (n = 27) | T1 (n = 27) | p-Value |
---|---|---|---|
RV systolic function | |||
RVFWLS (%) | −23.9 (±2.1) | −23.7 (±2.4) | 0.610 |
LV systolic function | |||
LV GLS (%) | −22.5 (±1.5) | −23.5 (±1.9) | 0.016 |
LV diastolic function | |||
E/e’ | 5.79 (±0.78) | 5.82 (±0.74) | 0.856 |
LAS (%) | 41.1 (±5.4) | 41.1 (±4.93) | 0.975 |
LV measurements | |||
EDD (mm) | 42.5 (±3.7) | 43.3 (±4.0) | 0.045 |
EDD z-score | −1.09 (±1.05) | −1.01 (±1.06) | 0.435 |
IVSd (mm) | 7.84 (±0.96) | 7.63 (±0.94) | 0.011 |
IVSd z-score | 0.19 (±0.48) | −0.001 (±0.41) | 0.001 |
PWd (mm) | 7.55 (±0.84) | 7.47 (±0.82) | 0.239 |
PWd z-score | 0.41 (±0.59) | 0.27 (±0.58) | 0.017 |
LV mass indexed for height (g/m2.7) | 33.61 (±6.35) | 32.23 (±5.36) | 0.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannarino, S.; Santacesaria, S.; Raso, I.; Garbin, M.; Pipolo, A.; Ghiglia, S.; Tarallo, G.; De Silvestri, A.; Vandoni, M.; Lucini, D.; et al. Benefits in Cardiac Function from a Remote Exercise Program in Children with Obesity. Int. J. Environ. Res. Public Health 2023, 20, 1544. https://doi.org/10.3390/ijerph20021544
Mannarino S, Santacesaria S, Raso I, Garbin M, Pipolo A, Ghiglia S, Tarallo G, De Silvestri A, Vandoni M, Lucini D, et al. Benefits in Cardiac Function from a Remote Exercise Program in Children with Obesity. International Journal of Environmental Research and Public Health. 2023; 20(2):1544. https://doi.org/10.3390/ijerph20021544
Chicago/Turabian StyleMannarino, Savina, Sara Santacesaria, Irene Raso, Massimo Garbin, Andreana Pipolo, Silvia Ghiglia, Gabriele Tarallo, Annalisa De Silvestri, Matteo Vandoni, Daniela Lucini, and et al. 2023. "Benefits in Cardiac Function from a Remote Exercise Program in Children with Obesity" International Journal of Environmental Research and Public Health 20, no. 2: 1544. https://doi.org/10.3390/ijerph20021544
APA StyleMannarino, S., Santacesaria, S., Raso, I., Garbin, M., Pipolo, A., Ghiglia, S., Tarallo, G., De Silvestri, A., Vandoni, M., Lucini, D., Carnevale Pellino, V., Bernardelli, G., Gatti, A., Rossi, V., Calcaterra, V., & Zuccotti, G. (2023). Benefits in Cardiac Function from a Remote Exercise Program in Children with Obesity. International Journal of Environmental Research and Public Health, 20(2), 1544. https://doi.org/10.3390/ijerph20021544