Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Data Collection
2.2. Psychological Lexicons
2.3. Data Analysis
2.3.1. Logistic Regression Modeling
2.3.2. Linear Regression Modeling
2.3.3. Topic Modeling
3. Results
3.1. Logistic Regression Modeling
3.2. Linear Regression Modeling
3.3. Topic Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (accessed on 1 May 2021).
- Murphy, J.A.; Byrne, G.J. Prevalence and correlates of the proposed DSM-5 diagnosis of chronic depressive disorder. J. Affect. Disord. 2012, 139, 172–180. [Google Scholar] [CrossRef]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef]
- Depression. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 8 November 2022).
- Mitchell, A.J.; Vaze, A.; Rao, S. Clinical diagnosis of depression in primary care: A meta-analysis. Lancet 2009, 374, 609–619. [Google Scholar] [CrossRef]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Feng, X.L.; Ahmed, F.; Shahid, M.; Guo, J. Detecting and measuring depression on social media using a machine learning approach: Systematic review. JMIR Ment. Health 2022, 9, e27244. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, H.A.; Sap, M.; Kern, M.L.; Eichstaedt, J.C.; Kapelner, A.; Agrawal, M.; Blanco, E.; Dziurzynski, L.; Park, G.; Stillwell, D.; et al. Predicting individual well-being through the language of social media. In Biocomputing 2016: Proceedings of the Pacific Symposium; World Scientific Publishing: Singapore, 2016; pp. 516–527. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Ji, Y.; Sun, L.; Wu, L.; Bao, Z. A depression detection model based on sentiment analysis in micro-blog social network. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining 2013, Gold Coast, Australia, 14–17 April 2013; pp. 201–213. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, T.M.; Kwok, C.L.; Zhu, T.; Yip, P.S. Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study. J. Med. Internet Res. 2017, 19, e243. [Google Scholar] [CrossRef]
- Ricard, B.J.; Marsch, L.A.; Crosier, B.; Hassanpour, S. Exploring the utility of community-generated social media content for detecting depression: An analytical study on Instagram. J. Med. Internet Res. 2018, 20, e11817. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, M.M.; Lin, H.; Xu, B.; Yang, L. Detection of depression-related posts in reddit social media forum. IEEE Access 2019, 7, 44883–44893. [Google Scholar] [CrossRef]
- Yao, X.; Yu, G.; Tang, J.; Zhang, J. Extracting depressive symptoms and their associations from an online depression community. Comput. Hum. Behav. 2021, 120, 106734. [Google Scholar] [CrossRef]
- Beck, A.T.; Kovacs, M.; Weissman, A. Assessment of suicidal intention: The Scale for Suicide Ideation. J. Consult. Clin. Psychol. 1979, 47, 343. [Google Scholar] [CrossRef]
- Law, K.C.; Jin, H.M.; Anestis, M.D. The intensity of suicidal ideation at the worst point and its association with suicide attempts. Psychiatry Res. 2018, 269, 524–528. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.M.; Corderoy, A.; Ryan, C.J.; Hickie, I.B.; Large, M.M. Association between suicidal ideation and suicide: Meta-analyses of odds ratios, sensitivity, specificity and positive predictive value. BJPsych Open 2019, 5, e24. [Google Scholar] [CrossRef]
- Ramírez-Cifuentes, D.; Freire, A.; Baeza-Yates, R.; Puntí, J.; Medina-Bravo, P.; Velazquez, D.A.; Gonfaus, J.M.; Gonzàlez, J. Detection of suicidal ideation on social media: Multimodal, relational, and behavioral analysis. J. Med. Internet Res. 2020, 22, e17758. [Google Scholar] [CrossRef] [PubMed]
- Manago, A.; Taylor, T.; Greenfield, P. Me and my 400 friends: The anatomy of college students’ facebook networks, their communication patterns, and wellbeing. Dev. Psychol. 2012, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Jashinsky, J.; Burton, S.H.; Hanson, C.L.; West, J.; Giraud-Carrier, C.; Barnes, M.D.; Argyle, T. Tracking suicide risk factors through Twitter in the US. Crisis J. Crisis Interv. Suicide Prev. 2014, 35, 51. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Alsubari, S.N.; Alshebami, A.S.; Alkahtani, H.; Ahmed, Z.A. Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. Int. J. Environ. Res. Public Health 2022, 19, 12635. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, D.; Liu, X. Suicide Possibility Scale Detection via Sina Weibo Analytics: Preliminary Results. Int. J. Environ. Res. Public Health 2022, 20, 466. [Google Scholar] [CrossRef]
- Liu, J.; Shi, M.; Jiang, H. Detecting suicidal ideation in social media: An ensemble method based on feature fusion. Int. J. Environ. Res. Public Health 2022, 19, 8197. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Geerlings, S.W.; Deeg, D.J.H.; van Eijk, J.T.; van Tilburg, W.; Beekman, A.T. Minor and major depression and the risk of death in older persons. Arch. Gen. Psychiatry 1999, 56, 889–895. [Google Scholar] [CrossRef]
- Chiu, C.C.; Liu, H.C.; Li, W.H.; Tsai, S.Y.; Chen, C.C.; Kuo, C.J. Incidence, risk and protective factors for suicide mortality among patients with major depressive disorder. Asian J. Psychiatry 2023, 80, 103399. [Google Scholar] [CrossRef]
- Malhotra, A.; Jindal, R. Deep learning techniques for suicide and depression detection from online social media: A scoping review. Appl. Soft Comput. 2022, 130, 109713. [Google Scholar] [CrossRef]
- Benton, M.; Mitchell, D. Hovy, Multitask learning for mental health conditions with limited social media data. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 1, in: Long Papers. pp. 152–162. [Google Scholar]
- Gkotsis, G.; Oellrich, A.; Velupillai, S.; Liakata, M.; Hubbard, T.; Dobson, R.; Dutta, R. Characterisation of mental health conditions in social media using Informed Deep Learning. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Yates, A.; Cohan, A.; Goharian, N. Depression and self-harm risk assessment in online forums. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 2968–2978. [Google Scholar]
- Halder, K.; Poddar, L.; Kan, M.Y. Modeling temporal progression of emotional status in mental health forum: A recurrent neural net approach. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Copenhagen, Denmark, 8 September 2017; pp. 127–135. [Google Scholar]
- Ji, S.; Li, X.; Huang, Z.; Cambria, E. Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput. Appl. 2022, 34, 10309–10319. [Google Scholar] [CrossRef]
- Mann, P.; Paes, A.; Matsushima, E.H. See and read: Detecting depression symptoms in higher education students using multimodal social media data. In Proceedings of the International AAAI Conference on Web and Social Media, Atlanta, GA, USA, 8 June 2020; Volume 14, pp. 440–451. [Google Scholar]
- Maupomé, D.; Armstrong, M.D.; Belbahar, R.M.; Alezot, J.; Balassiano, R.; Queudot, M.; Mosser, S.; Meurs, M.-J. Early Mental Health Risk Assessment Through Writing Styles, Topics and Neural Models. In Proceedings of the CLEF (Working Notes), Thessaloniki, Greece, 22–25 September 2020. [Google Scholar]
- Maupomé, M.D.; Armstrong, F.; Rancourt, M.J. Meurs, Leveraging textual similarity to predict beck depression inventory answers. In Proceedings of the Canadian Conference on Artificial Intelligence, Vancouver, BC, Canada, 25–28 May 2021. [Google Scholar]
- Uban, A.S.; Chulvi, B.; Rosso, P. An emotion and cognitive based analysis of mental health disorders from social media data. Future Gener. Comput. Syst. 2021, 124, 480–494. [Google Scholar] [CrossRef]
- Ragheb, W.; Aze, J.; Bringay, S.; Servajean, M. Negatively Correlated Noisy Learners for At-risk User Detection on Social Networks: A Study on Depression, Anorexia, Self-harm and Suicide. IEEE Trans. Knowl. Data Eng. 2021, 35, 770–783. [Google Scholar] [CrossRef]
- Basile, A.; Chinea-Rios, M.; Uban, A.S.; Müller, T.; Rössler, L.; Yenikent, S.; Chulvi-Ferriols, M.A. UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet. In Proceedings of the CLEF (Working Notes), Bucharest, Romania, 21–24 September 2021; pp. 908–927. [Google Scholar]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Nordin, N.; Zainol, Z.; Noor, M.H.M.; Chan, L.F. Suicidal behaviour prediction models using machine learning techniques: A systematic review. Artif. Intell. Med. 2022, 132, 102395. [Google Scholar] [CrossRef]
- Gao, R.; Hao, B.; Bai, S.; Li, L.; Li, A.; Zhu, T. Improving user profile with personality traits predicted from social media content. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 355–358. [Google Scholar]
- Zhao, N.; Jiao, D.; Bai, S.; Zhu, T. Evaluating the Validity of Simplified Chinese Version of LIWC in Detecting Psychological Expressions in Short Texts on Social Network Services. PLoS ONE 2016, 11, e0157947. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The Impact of COVID-19 Epidemic Declaration on Psychological Consequences: A Study on Active Weibo Users. Int. J. Environ. Res. Public Health 2020, 17, 2032. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Yang, Q.-L.; Liu, Z.-Q.; Qiu, J.-L.; Gu, J.; Hao, Y.-T.; Song, C.; Jia, Z.-W.; Hao, C. Associations Between Affective States and Sexual and Health Status among Men Who Have Sex with Men in China: Exploratory Study Using Social Media Data. J. Med. Internet Res. 2020, 22, e13201. [Google Scholar] [CrossRef]
- Huang, F.; Li, S.; Li, D.; Yang, M.; Ding, H.; Di, Y.; Zhu, T. The Impact of Mortality Salience, Negative Emotions and Cultural Values on Suicidal Ideation in COVID-19: A Conditional Process Model. Int. J. Environ. Res. Public Health 2022, 19, 9200. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Ding, H.; Liu, Z.; Wu, P.; Zhu, M.; Li, A.; Zhu, T. How fear and collectivism influence public’s preventive intention towards COVID-19 infection: A study based on big data from the social media. BMC Public Health 2020, 20, 1707. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, F. Which Socio-Economic Indicators Influence Collective Morality? Big Data Analysis on Online Chinese Social Media. Emerg. Mark. Financ. Trade 2018, 54, 792–800. [Google Scholar] [CrossRef]
- Lv, M.; Li, A.; Liu, T.; Zhu, T. Creating a Chinese suicide dictionary for identifying suicide risk on social media. Peer J. 2015, 3, e1455. [Google Scholar] [CrossRef]
- Pourmand, A.; Roberson, J.; Caggiula, A.; Monsalve, N.; Rahimi, M.; Torres-Llenza, V. Social Media and Suicide: A Review of Technology-Based Epidemiology and Risk Assessment. Telemed. E-Health 2019, 25, 880–888. [Google Scholar] [CrossRef]
- Liu, D.; Fu, Q.; Wan, C.; Liu, X.; Jiang, T.; Liao, G.; Qiu, X.; Liu, R. Suicidal Ideation Cause Extraction from Social Texts. IEEE Access 2020, 8, 169333–169351. [Google Scholar] [CrossRef]
- Dobson, A.J. An Introduction to Generalized Linear Models, 4th ed.; Chapman and HALL/CRC: Boca Raton, FL, USA, 2018; ISBN 978-13-1518-278-0. [Google Scholar]
- Hastie, T.J.; Pregibon, D. Generalized Linear Models, 2nd ed.; Routledge: New York, NY, USA, 2019; ISBN 978-02-0375-373-6. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall/CRC: London, UK, 1989; ISBN 978-04-1231-760-6. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2003; ISBN 978-03-8795-457-8. [Google Scholar]
- Senaviratna, N.A.M.R.; Cooray, T.M.J.A. Diagnosing multicollinearity of logistic regression model. Asian J. Probab. Stat. 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Chambers, J.M. Statistical Models in S, 1st ed.; Routledge: Oxfordshire, UK, 1992; Chapter 4 Linear models; ISBN 978-02-0373-853-5. [Google Scholar]
- Wilkinson, G.N.; Rogers, C.E. Symbolic descriptions of factorial models for analysis of variance. Appl. Stat. 1973, 22, 392–399. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Xu, R.; Zhang, Q. Understanding online health groups for depression: Social network and linguistic perspectives. J. Med. Internet Res. 2016, 18, e63. [Google Scholar] [CrossRef]
- Zimmermann, J.; Wolf, M.; Bock, A.; Peham, D.; Benecke, C. The way we refer to ourselves reflects how we relate to others: Associations between first-person pronoun use and interpersonal problems. J. Res. Personal. 2013, 47, 218–225. [Google Scholar] [CrossRef]
- Holtzman N, S. A meta-analysis of correlations between depression and first person singular pronoun use. J. Res. Personal. 2017, 68, 63–68. [Google Scholar]
- Chung, C.; Pennebaker, J. The psychological functions of function words. Soc. Commun. 2011, 1, 343–359. [Google Scholar]
- Ji, S.; Yu, C.P.; Fung, S.; Pan, S.; Long, G. Supervised learning for suicidal ideation detection in online user content. Complexity 2018, 2018, 6157249. [Google Scholar] [CrossRef]
- Li, T.M.; Chau, M.; Yip, P.S.; Wong, P. Temporal and computerized psycholinguistic analysis of the blog of a Chinese adolescent suicide. Crisis J. Crisis Interv. Suicide Prev. 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Kim, K.; Choi, S.; Lee, J.; Sea, J. Differences in linguistic and psychological characteristics between suicide notes and diaries. J. Gen. Psychol. 2019, 146, 1–26. [Google Scholar] [CrossRef]
- Coppersmith, G.; Leary, R.; Whyne, E.; Wood, T. Quantifying suicidal ideation via language usage on social media. In Proceedings of the Joint Statistics Meetings Proceedings, Statistical Computing Section, JSM, Seattle, WA, USA, 8–13 August 2015; Volume 110. [Google Scholar]
- Litvinova, T.A.; Seredin, P.V.; Litvinova, O.A.; Romanchenko, O.V. Identification of suicidal tendencies of individuals based on the quantitative analysis of their internet texts. Comput. Y Sist. 2017, 21, 243–252. [Google Scholar] [CrossRef]
- Liu, R.T.; Miller, I. Life events and suicidal ideation and behavior: A systematic review. Clin. Psychol. Rev. 2014, 34, 181–192. [Google Scholar] [CrossRef]
- Colucci, E.; Minas, H. Attitudes towards Youth Suicide: A Comparison between Italian, Indian and Australian Students. In Proceedings of the IACCP Regional Conference, Los Angeles, CA, USA, 20–22 June 2013. [Google Scholar]
- Chioqueta, A.P.; Stiles, T.C. Personality traits and the development of depression, hopelessness, and suicide ideation. Personal. Individ. Differ. 2005, 38, 1283–1291. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Cleare, S.; Eschle, S.; Wetherall, K.; Kirtley, O.J. The integrated motivational-volitional model of suicidal behavior: An update. Int. Handb. Suicide Prev. 2016, 373, 220–240. [Google Scholar] [CrossRef]
- Franklin, J.C.; Ribeiro, J.D.; Fox, K.R.; Bentley, K.H.; Kleiman, E.M.; Huang, X.; Musacchio, K.M.; Jaroszewski, A.C.; Chang, B.P.; Nock, M.K. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol. Bull. 2017, 143, 187. [Google Scholar] [CrossRef]
- Krauss, S.; Orth, U. Work experiences and self-esteem development: A meta-analysis of longitudinal studies. Eur. J. Personal. 2021, 36, 849–869. [Google Scholar] [CrossRef]
- Schunk, D.H. Self-efficacy and achievement behaviors. Educ. Psychol. Rev. 1989, 1, 173–208. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Greer, T.L. Cognitive dysfunction in unipolar depression: Implications for treatment. J. Affect. Disord. 2014, 152, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Murrough, J.W.; Iacoviello, B.; Neumeister, A.; Charney, D.S.; Iosifescu, D.V. Cognitive dysfunction in depression: Neurocircuitry and new therapeutic strategies. Neurobiol. Learn. Mem. 2011, 96, 553–563. [Google Scholar] [CrossRef]
SCLIWC Features | β | S.E. | Z | p | sig |
---|---|---|---|---|---|
Intercept | −0.47 | 0.06 | −8.00 | 0.00 | *** |
I | 1.02 | 0.10 | 10.52 | 0.00 | *** |
We | 0.14 | 0.06 | 2.14 | 0.03 | * |
Quantifier | −0.20 | 0.06 | −3.59 | 0.00 | *** |
Prepend | 0.21 | 0.06 | 3.48 | 0.00 | *** |
Specart | −0.30 | 0.06 | −5.09 | 0.00 | *** |
Multi-Functional | −0.26 | 0.09 | −2.96 | 0.00 | ** |
Social | 0.23 | 0.08 | 2.80 | 0.01 | ** |
Family | −0.16 | 0.06 | −2.70 | 0.01 | ** |
Affection | 0.40 | 0.13 | 3.00 | 0.00 | ** |
Positive Emotions | −0.25 | 0.10 | −2.43 | 0.02 | * |
Negative Emotions | 0.40 | 0.12 | 3.23 | 0.00 | ** |
Sadness | 0.41 | 0.09 | 4.44 | 0.00 | *** |
Discrepancies | 0.51 | 0.13 | 4.04 | 0.00 | *** |
Tentative | 0.34 | 0.10 | 3.41 | 0.00 | *** |
Exclusive | −0.35 | 0.10 | −3.57 | 0.00 | *** |
Perceptual Processes | −0.40 | 0.11 | −3.71 | 0.00 | *** |
See | 0.38 | 0.11 | 3.48 | 0.00 | *** |
Hear | 0.17 | 0.07 | 2.34 | 0.02 | * |
Health | 0.70 | 0.09 | 7.95 | 0.00 | *** |
Ingest | −0.26 | 0.09 | −2.88 | 0.00 | ** |
Relativity | −0.40 | 0.11 | −3.80 | 0.00 | *** |
Motion | 0.32 | 0.07 | 4.89 | 0.00 | *** |
Work | −0.19 | 0.06 | −2.92 | 0.00 | ** |
Achieve | −0.30 | 0.07 | −4.33 | 0.00 | *** |
Money | −0.21 | 0.08 | −2.67 | 0.01 | ** |
Death | 0.36 | 0.08 | 4.37 | 0.00 | *** |
Nonfluencies | 0.21 | 0.08 | 2.60 | 0.01 | ** |
Filler Words | −0.28 | 0.08 | −3.57 | 0.00 | *** |
Period | −0.15 | 0.07 | −2.15 | 0.03 | * |
Comma | −0.28 | 0.06 | −4.68 | 0.00 | *** |
Semicolon | −0.29 | 0.08 | −3.51 | 0.00 | *** |
Exclamation | −0.22 | 0.07 | −3.29 | 0.00 | ** |
Dash | 0.31 | 0.08 | 3.77 | 0.00 | *** |
Quote | −0.27 | 0.08 | −3.25 | 0.00 | ** |
Parentheses | 0.18 | 0.07 | 2.69 | 0.01 | ** |
Other Punctuation | −0.17 | 0.07 | −2.38 | 0.02 | * |
Word Count | 1.00 | 0.07 | 14.54 | 0.00 | *** |
Words Per Sentence | −0.59 | 0.20 | −3.02 | 0.00 | ** |
Rate of Dictionary Cover | −0.30 | 0.11 | −2.82 | 0.00 | ** |
Rate of Numerals | −0.70 | 0.09 | −8.11 | 0.00 | *** |
Rate Four Char Words | −0.19 | 0.08 | −2.31 | 0.02 | * |
Rate of Latin Words | 0.38 | 0.08 | 4.52 | 0.00 | *** |
Number of Emotions | −0.76 | 0.10 | −7.61 | 0.00 | *** |
Number of Hashtags | 0.42 | 0.08 | 5.42 | 0.00 | *** |
Number of URLs | 0.29 | 0.07 | 4.24 | 0.00 | *** |
SCLIWC Features | β | S.E. | T | p | Sig |
---|---|---|---|---|---|
We | 0.10 | 0.01 | 10.13 | 0.00 | *** |
Quantifier | −0.04 | 0.01 | −4.19 | 0.00 | *** |
Prepend | 0.03 | 0.01 | 2.65 | 0.01 | ** |
Specart | 0.03 | 0.01 | 3.22 | 0.00 | ** |
Social | 0.07 | 0.01 | 5.90 | 0.00 | *** |
Family | 0.02 | 0.01 | 1.98 | 0.05 | * |
Affection | 0.07 | 0.02 | 3.26 | 0.00 | ** |
Positive Emotion | −0.09 | 0.02 | −5.54 | 0.00 | *** |
Negative Emotion | 0.15 | 0.02 | 8.39 | 0.00 | *** |
Sadness | 0.04 | 0.02 | 2.72 | 0.01 | ** |
Discrepancies | 0.05 | 0.02 | 3.46 | 0.00 | *** |
Tentative | 0.08 | 0.02 | 5.15 | 0.00 | *** |
Exclusive | −0.09 | 0.02 | −6.00 | 0.00 | *** |
See | −0.10 | 0.02 | −5.73 | 0.00 | *** |
Hear | 0.06 | 0.01 | 5.09 | 0.00 | *** |
Health | 0.11 | 0.01 | 8.59 | 0.00 | *** |
Ingest | −0.09 | 0.01 | −7.27 | 0.00 | *** |
Relativity | −0.11 | 0.01 | −10.52 | 0.00 | *** |
Work | 0.08 | 0.01 | 7.87 | 0.00 | *** |
Achieve | −0.02 | 0.01 | −2.13 | 0.03 | * |
Money | −0.07 | 0.01 | −4.88 | 0.00 | *** |
Death | 0.12 | 0.01 | 9.01 | 0.00 | *** |
Nonfluencies | 0.05 | 0.01 | 3.99 | 0.00 | *** |
Period | 0.07 | 0.01 | 6.13 | 0.00 | *** |
Comma | 0.08 | 0.01 | 8.43 | 0.00 | *** |
Exclamation | −0.02 | 0.01 | −1.97 | 0.05 | * |
Parentheses | −0.03 | 0.01 | −2.63 | 0.01 | ** |
Other Punctuation | −0.11 | 0.01 | −8.55 | 0.00 | *** |
Word Count | 0.12 | 0.01 | 10.56 | 0.00 | *** |
Words Per Sentence | 0.14 | 0.02 | 5.57 | 0.00 | *** |
Rate of Dictionary Cover | 0.09 | 0.02 | 5.37 | 0.00 | *** |
Rate Four Char Words | 0.12 | 0.01 | 9.76 | 0.00 | *** |
Rate of Latin Words | −0.08 | 0.01 | −5.44 | 0.00 | *** |
Number of Emotions | 0.06 | 0.02 | 3.66 | 0.00 | *** |
Number of Hashtags | 0.07 | 0.02 | 4.77 | 0.00 | *** |
Number of URLs | −0.03 | 0.01 | −4.24 | 0.00 | *** |
Abstract | Topics |
---|---|
(1) Common topics that are usually discussed on Weibo such as idolization and hot events such as the Olympic Games and New Year; (2) Common online behavior such as microblog forwarding. | Yuan Wang *, TF boys, microblog, Junkai Wang, video, broadcast, music, Qianxi, juvenile |
Full text, video, microblog, broadcast, China, hahahaha, America, hahaha, link, webpage | |
Endeavour, Yixing Zhang, microblog, hip-hop, Zhan Xiao, video, broadcast, juvenile, studio, September 18th incident | |
Microblog, forwarding, video, broadcast, full text, China, really, 10000 times, lottery, like | |
Microblog, red envelope, cash, 2021, forwarding, New Year’s Eve, links, web pages, Fortune, voting |
Abstract | Topics |
---|---|
(1) Common topics that are usually discussed on Weibo, such as music and idolization; (2) Mental health-related words such as depression and hope. | Xukun Cai, Jie Zhang, cover, year, 2019, music, 2020, new song, Minghao Huang, Xun Wei |
Microblog, forwarding, video, full text, playback, link, webpage, hahahaha, juvenile, lottery | |
Depression, microblog, real, full text, forwarding, video, love, hope, life, feeling | |
TF, boys, Yuan Wang, Qian Xi, Junkai Wang, band, Xia Ye, film, new album, fan club | |
Dilraba, dear, Lu Bai, Glory, Jingjing, Badaling, Peacock, Deyun Society, Kowloon |
Abstract | Topics |
---|---|
(1) Negative emotions; (2) Depression treatment-related discussion; (3) Family and friends. | No, really, taking medicine, depression, doctor, depression, living, whether there is, fear, making me |
Really, feeling, happiness, life, emotion, disappointment, suffering, sadness, as if | |
A little, hope, collapse, mom, sleep, someone, sometimes, good night, Er Ha (silly like a Siberian husky), friends | |
Evening, leaving, happy, want to, understanding, a few days, friends, http, cn, cute | |
Like, work, bad, world, hospital, more and more, if, tell, tomorrow, doctor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Wang, X.; Zhou, W.; Hang, B.; Guo, L. Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches. Int. J. Environ. Res. Public Health 2023, 20, 2688. https://doi.org/10.3390/ijerph20032688
Pan W, Wang X, Zhou W, Hang B, Guo L. Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches. International Journal of Environmental Research and Public Health. 2023; 20(3):2688. https://doi.org/10.3390/ijerph20032688
Chicago/Turabian StylePan, Wei, Xianbin Wang, Wenwei Zhou, Bowen Hang, and Liwen Guo. 2023. "Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches" International Journal of Environmental Research and Public Health 20, no. 3: 2688. https://doi.org/10.3390/ijerph20032688
APA StylePan, W., Wang, X., Zhou, W., Hang, B., & Guo, L. (2023). Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches. International Journal of Environmental Research and Public Health, 20(3), 2688. https://doi.org/10.3390/ijerph20032688