Impact of Correlated Color Temperature on Visitors’ Perception and Preference in Virtual Reality Museum Exhibitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Devices and Settings
2.3. Procedure
2.4. Psychophysiological Recordings
2.5. Subjective Assessments
2.6. Data Processing and Analysis
3. Results
3.1. Psychophysiological Variables
3.1.1. Significance Test
3.1.2. Eye Movement and Heart Rate Variability
3.1.3. Sex and Major Differences in Psychophysiological Variables
1. Sex
2. Major
3.2. Subjective Assessments
3.2.1. Perception Scale
3.2.2. Preference Ranking
4. Discussion
4.1. Correlated Color Temperature and Subjective Assessment
4.2. Correlated Color Temperature and Psychophysiological Variables
4.3. Sex and Major Differences
4.4. Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif-Askari, H.; Abu-Hijleh, B. Review of museums’ indoor environment conditions studies and guidelines and their impact on the museums’ artifacts and energy consumption. Build. Environ. 2018, 143, 186–195. [Google Scholar] [CrossRef]
- Kaya, S.M.; Afacan, Y. Effects of daylight design features on visitors’ satisfaction of museums. Indoor Built Environ. 2018, 27, 1341–1356. [Google Scholar] [CrossRef]
- Gou, Z.; Lau, S.S.; Qian, F. Comparison of mood and task performance in naturally-lit and artificially-lit environments. Indoor Built Environ. 2015, 24, 27–36. [Google Scholar] [CrossRef]
- Leccese, F.; Salvadori, G.; Maccheroni, D.; Feltrin, F. Lighting and visual experience of artworks: Results of a study campaign at the National Museum of San Matteo in Pisa, Italy. J. Cult. Herit. 2020, 45, 254–264. [Google Scholar] [CrossRef]
- Gao, H.W.; Wang, Z.S.; Zhu, D.; Zhang, C.; Zou, N.Y. Research on the influence of lighting mode and CCT on the lighting design of art museum based on subjective experiment. AIP Adv. 2021, 10. [Google Scholar] [CrossRef]
- Semin, O.; Kwak, Y. A hue and warm-cool model for warm-cool based correlated color temperature calculation. Color Res. Appl. 2022, 47, 953–965. [Google Scholar]
- Feltrin, F.F.; Leccese, P.; Hanselaer, K.A.G. Smet. Impact of illumination correlated cct, background lightness, and painting color content on color appearance and appreciation of paintings. Leukos 2019, 16, 25–44. [Google Scholar] [CrossRef]
- Dang, R.; Guo, W.L.; Luo, T. Correlated colour temperature index of lighting source for polychrome artworks in museums. Build. Environ. 2020, 185, 107287. [Google Scholar] [CrossRef]
- Scuello, M.; Abramov, I.; Gordon, J.; Weintraub, S.; Weintra, S. Museum lighting: Optimizing the illustrant. Color Res. Appl. 2004, 29, 121–127. [Google Scholar] [CrossRef]
- Nascimento, S.M.C.; Masuda, O. Best lighting for visual appreciation of artistic paintings--experiments with real paintings and real illumination. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2014, 31, A214–A219. [Google Scholar] [CrossRef]
- Zhao, Q.; Luo, M.; Liu, X. The impact of illumination and colour temperature on viewing fine art paintings under LED lighting. Light. Res. Technol. 2014, 47, 795–809. [Google Scholar] [CrossRef]
- Zhai, Q.; Luo, M.; Liu, X. The impact of LED lighting parameters on viewing fine art paintings. Light. Res. Technol. 2016, 48, 711–725. [Google Scholar] [CrossRef]
- Chen, H.S.; Chou, C.J.; Luo, H.W.; Luo, M. Museum lighting environment: Designing a perception zone map and emotional response models. Light. Res. Technol. 2016, 48, 589–607. [Google Scholar] [CrossRef]
- Feltrin, F.; Leccese, F.; Hanselaer, P.; Smet, K. Analysis of painted artworks’ color appearance under various lighting settings. In Proceedings of the IEEE I and CPS Europe, Milan, Italy, 6–9 June 2017. [Google Scholar]
- Wang, Z.S.; Nagai, Y.; Liu, J.H.; Zou, N.Y.; Liang, J. Artificial lighting environment evaluation of the Japan Museum of Art based on the emotional response of observers. Appl. Sci. 2020, 10, 1121. [Google Scholar] [CrossRef]
- Nascimento, S.M.C.; Herdeiro, C.F.M.; Gomes, A.E.; Linhares, J.M.M.; Kondo, T.; Nakauchi, S. The Best CCT for appreciation of paintings under daylight illuminants is different for occidental and oriental viewers. Leukos 2021, 17, 310–318. [Google Scholar] [CrossRef]
- Ma, J.H.; Lee, J.K.; Cha, S.H. Effects of lighting CCT and illuminance on visual perception and task performance in immersive virtual environments. Build. Environ. 2022, 209, 108678. [Google Scholar] [CrossRef]
- Shehade, M.; Stylianou-Lambert, T. Virtual Reality in Museums: Exploring the Experiences of Museum Professionals. Appl. Sci. 2020, 10, 4031. [Google Scholar] [CrossRef]
- Choi, K.S.; Yoonjae, N. A Study on the Authenticity and Educational Role of Museum Exhibition Using Virtual Reality. J. Speech Media Commun. Res. 2021, 20, 77–118. [Google Scholar] [CrossRef]
- Zhou, C.M.; Huang, T.; Liang, S. Smart home R&D system based on virtual reality. J. Intell. Fuzzy Syst. 2021, 40, 3045–3054. [Google Scholar]
- Zhang, K.Z.; Chen, Z.Q.; Chen, J.B.; Huang, X.Q.; Yun, L.J.; Tai, Y.H. Pupil diameter variation related to visual comfort of hue-asymmetric stereoscopic images. J. Soc. Inf. Disp. 2022, 30, 808–817. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Xu, B.M.; Zhang, T.X. Aesthetic study of patterns based on event-related potential and eye-tracking: Taking the decorative patterns of the Tang dynasty as an example. J. Soc. Inf. Disp. 2020, 29, 119–129. [Google Scholar] [CrossRef]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.G.; Mortimer, M.A.; Enticott, P.G. Built environment color modulates autonomic and EEG indices of emotional response. Psychophysiology 2022, 59, e14121. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.F.T.; Gil-Cabrera, J.; Clemente-Suarez, V.J. Determining the psychophysiological responses of military aircrew when exposed to acute disorientation stimuli. BMJ Military Health 2022, 168, 112–116. [Google Scholar] [CrossRef]
- Fuentes-Sanchez, N.; Jaen, I.; Escrig, M.A.; Lucas, I.; Pastor, M.C. Cognitive reappraisal during unpleasant picture processing: Subjective self-report and peripheral physiology. Psychophysiology 2019, 56, e13372. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, H.Z.; Qiu, L.M.; Shen, L.M. Visual Characteristics Study of Traditional Round-Backed Armchair Based on Eye-Tracking. In Proceedings of the 17th International Conference on Man-Machine-Environment System Engineering (MMESE), Jinggangshan, China, 21–23 October 2017. [Google Scholar]
- Wang, K.C. Color Vision Test Chart, 2nd ed.; People’s Health Publishing House: Beijing, China, 2005; pp. 2–8. [Google Scholar]
- Moreira, P.S.; Chaves, P.; Dias, R.; Dias, N.; Almeida, P.R. Validation of wireless sensors for psychophysiological studies. Sensors 2019, 19, 4824. [Google Scholar]
- Xue, Y.; Wen, Y.X. Research on the impact of Museum exhibition environment on audience experience: Taking “Feng·Shang-China’s export fans from the 18th to the 20th century” as an example. Southeast Cult. 2020, 3, 174–182. [Google Scholar]
- Xu, Z.; Xu, Q.X.; Wang, Y.F.; Zhang, J.L.; Liu, J.P.; Xu, F. Association of sedentary behavior and depression among college students majoring in design. Int. J. Environ. Res. Public Health 2020, 17, 3545. [Google Scholar] [CrossRef]
- Yang, W.Y.; Jeon, J.Y. Effects of Correlated Colour Temperature of LED Light on Visual Sensation, Perception, and Cognitive Performance in a Classroom Lighting Environment. Sustainability 2020, 12, 4051. [Google Scholar] [CrossRef]
- Baniya, R.R.; Tetri, E.; Virtanen, J.; Halonen, L. The effect of correlated colour temperature of lighting on thermal sensation and thermal comfort in a simulated indoor workplace. Indoor Built Environ. 2018, 27, 308–316. [Google Scholar] [CrossRef]
- Chen, R.J.; Tsai, M.C.; Tsay, Y.S. Effect of CCT and illuminance on psychology, physiology, and productivity: An experimental study. Energies 2022, 15, 4477. [Google Scholar]
- Li, X.X.; Zhou, B.; Shen, L.M.; Wu, Z.H. Exploring the effect of mattress cushion materials on human–mattress interface temperatures, pre-sleep thermal state and sleep quality. Indoor Built Environ. 2020, 30, 650–664. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, N.; Xu, L.; Guan, H.Y. Study on cold/warm sensation of materials used in desktop of furniture. Wood Res. 2020, 65, 497–506. [Google Scholar] [CrossRef]
- Yu, N.; Wang, J.; Hong, L.; Tao, B.B.; Zhang, C. Evaluation of the color aesthetics of fine wood based on perceptual cognition. Bioresources 2021, 16, 4126–4148. [Google Scholar] [CrossRef]
- Zhagn, Z.H.; Xu, B.M. Tang dynasty chair feature design based on kansei evaluation and eye tracking system. Wood Res. 2020, 65, 161–174. [Google Scholar] [CrossRef]
- Wulvik, A.S.; Dybvik, H.; Steinert, M. Investigating the relationship between mental state (workload and affect) and physiology in a control room setting (ship bridge simulator). Cogn. Technol. Work 2020, 22, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Marin-Morales, J.; Higuera-Trujillo, J.L.; Valenza, G. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios. PLoS ONE 2021, 16, e0254098. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Cheung, V.; Westland, S.; Rhodes, P.A.; Shen, L.M.; Xu, L. The impact of color preference on adolescent children’s choice of furniture. Color Res. Appl. 2020, 45, 754–767. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Q.; Pointer, M.; Bodrogi, P.; Khanh, T.Q.; Liu, A.Q. Gender difference in colour preference of lighting: A pilot study. Light Eng. 2020, 28, 111–122. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Gao, W.Y.; Pointer, M.R.; Huang, Z.; Chen, W.; Wu, J.X. Interactive effect of illuminance and correlated colour temperature on colour preference and degree of white light sensation for Chinese observers. Optik 2020, 224, 165675. [Google Scholar] [CrossRef]
Min | Max | Mean | Variance | Median | S-W | p | F-M | ||
---|---|---|---|---|---|---|---|---|---|
Eye movement | Mean Pupil diameter (mm) | 2.13 | 5.60 | 3.77 | 0.54 | 3.67 | 0.04 c** | 0.03 a** | 0.00 *** |
Min Pupil diameter (mm) | 1.00 | 3.58 | 2.37 | 0.12 | 2.30 | 0.00 c** | 0.03 a | - | |
Max Pupil diameter (mm) | 2.54 | 6.96 | 5.00 | 0.72 | 4.95 | 0.00 c** | 0.28 a | - | |
Blink Count (N) | 1.00 | 310.00 | 25.52 | 1032.11 | 16.50 | 0.00 c** | 0.57 a | - | |
Blink Frequency (N/s) | 0.01 | 1.20 | 0.16 | 0.03 | 0.11 | 0.00 c** | 0.49 a | 0.22 | |
Saccade Count (N) | 324.00 | 2312.00 | 974.35 | 156,614.59 | 900.65 | 0.00 c** | 0.92 a | - | |
Saccade Frequency (N/s) | 3.49 | 8.76 | 6.35 | 0.86 | 6.33 | 0.08 | 0.24 b | - | |
Total Saccade Time (s) | 15.81 | 120.09 | 47.90 | 385.61 | 44.88 | 0.00 c** | 0.92 a | - | |
EDA | Time Domain Phasic (μS) | −0.91 | 25.72 | 1.13 | 11.28 | 0.22 | 0.00 c** | 0.73 a | - |
Time Domain SC (μS) | −0.78 | 2.25 | 0.28 | 0.33 | 0.15 | 0.00 c** | 0.92 a | 0.35 | |
Time Domain Tonic Data (μS) | −0.56 | 2.22 | 0.29 | 0.34 | 0.15 | 0.00 c** | 0.92 a | - | |
PPG | Mean IBI (ms) | 498.13 | 977.64 | 708.69 | 9332.86 | 692.84 | 0.01 c** | 0.92 a | 0.92 |
Mean HR (bpm) | 61.00 | 120.00 | 86.18 | 133.21 | 86.50 | 0.29 | 0.85 b | - | |
SDNN (ms) | 12.02 | 774.60 | 71.63 | 6433.08 | 48.56 | 0.00 c** | 0.38 a | - | |
RMSSD (ms) | 6.37 | 1026.73 | 72.58 | 10,399.88 | 43.56 | 0.00 c** | 0.79 a | - | |
SDSD (ms) | 6.38 | 1030.79 | 72.82 | 10,485.51 | 43.68 | 0.00 c** | 0.79 a | - | |
pNN50 (%) | 0.38 | 66.15 | 16.72 | 291.38 | 9.49 | 0.00 c** | 0.57 a | - | |
Total Power (ms2) | 110.70 | 34,523,710.93 | 265,369.20 | 7,959,389,245,633.53 | 2069.46 | 0.00 c** | 0.19 a | - | |
LF/HF ratio | 0.31 | 36.34 | 3.88 | 24.86 | 2.71 | 0.00 c** | 0.05 a* | 0.10 |
Mean Pupil Diameter | LF/HF Ratio | ||||||
---|---|---|---|---|---|---|---|
Value | Freedom | p | Value | Freedom | p | ||
Sex | Pearson chi square | 0.17 | 2 | 0.92 | 11.61 | 2 | 0.00 *** |
Likelihood ratio | 0.18 | 2 | 0.92 | 11.65 | 2 | 0.00 | |
Linear correlation | 0.11 | 1 | 0.75 | 11.15 | 1 | 0.00 | |
Number of valid cases | 565 | 582 | |||||
Major | Pearson chi square | 0.01 | 2 | 0.99 | 9.58 | 2 | 0.01 ** |
Likelihood ratio | 0.01 | 2 | 0.99 | 9.61 | 2 | 0.01 | |
Linear correlation | 0.00 | 1 | 0.98 | 3.82 | 1 | 0.05 | |
Number of valid cases | 566 | 584 |
Number | Chi-Square | Freedom | p | |
---|---|---|---|---|
Warmth | 50 | 84.17 | 2 | 0.00 *** |
Comfort | 50 | 18.24 | 2 | 0.00 *** |
Pleasure | 50 | 10.49 | 2 | 0.01 ** |
Arousal | 50 | 2.20 | 2 | 0.33 |
Warmth | Comfort | Pleasure | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Freedom | p | Value | Freedom | p | Value | Freedom | p | ||
Sex | Pearson chi square | 0.28 | 2 | 0.87 | 0.28 | 2 | 0.87 | 0.28 | 2 | 0.87 |
likelihood ratio | 0.28 | 2 | 0.87 | 0.28 | 2 | 0.87 | 0.28 | 2 | 0.87 | |
Linear correlation | 0.00 | 1 | 0.98 | 0.00 | 1 | 0.98 | 0.00 | 1 | 0.98 | |
Number of valid cases | 217 | 217 | 217 | |||||||
Major | Pearson chi square | 0.34 | 2 | 0.84 | 6.92 | 2 | 0.03 ** | 2.83 | 2 | 0.24 |
likelihood ratio | 0.34 | 2 | 0.85 | 7.12 | 2 | 0.03 | 2.84 | 2 | 0.24 | |
Linear correlation | 0.33 | 1 | 0.57 | 6.75 | 1 | 0.01 | 2.81 | 1 | 0.09 | |
Number of valid cases | 217 | 215 | 203 |
Option | One Choice Quantity | Second Choice Quantity | Three Choice Quantity | Min | Max | Mean | SD | Ranking | |
---|---|---|---|---|---|---|---|---|---|
Overall | 4500 K | 27 | 18 | 5 | 1 | 3 | 2.44 | 0.67 | 1 |
6000 K | 13 | 15 | 22 | 1 | 3 | 1.82 | 0.83 | 2 | |
3000 K | 10 | 17 | 23 | 1 | 3 | 1.74 | 0.78 | 3 | |
Male | 3000 K | 4 | 6 | 10 | 1 | 3 | 1.70 | 0.80 | 3 |
4500 K | 12 | 6 | 2 | 1 | 3 | 2.50 | 0.69 | 1 | |
6000 K | 4 | 8 | 8 | 1 | 3 | 1.80 | 0.77 | 2 | |
Female | 3000 K | 6 | 11 | 13 | 1 | 3 | 1.77 | 0.77 | 3 |
4500 K | 15 | 12 | 3 | 1 | 3 | 2.40 | 0.67 | 1 | |
6000 K | 15 | 12 | 3 | 1 | 3 | 1.83 | 0.87 | 2 | |
Science and Engineering | 3000 K | 5 | 11 | 15 | 1 | 3 | 1.68 | 0.75 | 3 |
4500 K | 16 | 11 | 4 | 1 | 3 | 2.39 | 0.72 | 1 | |
6000 K | 10 | 9 | 12 | 1 | 3 | 1.94 | 0.85 | 2 | |
Humanities and Arts | 3000 K | 5 | 6 | 8 | 1 | 3 | 1.84 | 0.83 | 2 |
4500 K | 11 | 7 | 1 | 1 | 3 | 2.53 | 0.61 | 1 | |
6000 K | 3 | 6 | 10 | 1 | 3 | 1.63 | 0.76 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Lv, Y.; Liu, X.; Jiang, S.; Xie, H.; Zhang, X.; Xu, K. Impact of Correlated Color Temperature on Visitors’ Perception and Preference in Virtual Reality Museum Exhibitions. Int. J. Environ. Res. Public Health 2023, 20, 2811. https://doi.org/10.3390/ijerph20042811
Yu N, Lv Y, Liu X, Jiang S, Xie H, Zhang X, Xu K. Impact of Correlated Color Temperature on Visitors’ Perception and Preference in Virtual Reality Museum Exhibitions. International Journal of Environmental Research and Public Health. 2023; 20(4):2811. https://doi.org/10.3390/ijerph20042811
Chicago/Turabian StyleYu, Na, Yue Lv, Xiaorong Liu, Shuai Jiang, Huixuan Xie, Xiaofan Zhang, and Ke Xu. 2023. "Impact of Correlated Color Temperature on Visitors’ Perception and Preference in Virtual Reality Museum Exhibitions" International Journal of Environmental Research and Public Health 20, no. 4: 2811. https://doi.org/10.3390/ijerph20042811
APA StyleYu, N., Lv, Y., Liu, X., Jiang, S., Xie, H., Zhang, X., & Xu, K. (2023). Impact of Correlated Color Temperature on Visitors’ Perception and Preference in Virtual Reality Museum Exhibitions. International Journal of Environmental Research and Public Health, 20(4), 2811. https://doi.org/10.3390/ijerph20042811