Predictors of Maternal Serum Concentrations for Selected Persistent Organic Pollutants (POPs) in Pregnant Women and Associations with Birth Outcomes: A Cross-Sectional Study from Southern Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population and Sites
2.2. Study Questionnaire
2.3. Sample Collection and Preliminary Analysis
2.4. Serum Sample Analysis
2.5. Measurement of Birth Outcomes
2.6. Statistical Analysis
3. Results
3.1. Maternal Socio-Demographic and Neonates’ Anthropogenic Data
3.2. Maternal POP Serum Concentrations
3.3. Concentrations of POPs in Maternal Serum and Associations with Maternal Characteristics
3.4. Maternal Dietary Habits and Level of Education
3.5. POP Concentrations in Maternal Serum and Their Associations with Birth Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pariatamby, A.; Kee, Y.L. Persistent Organic Pollutants Management and Remediation. Procedia Environ. Sci. 2016, 31, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Suri, R.P.; Bi, X.; Sheng, G.; Fu, J. Exposure of young mothers and newborns to organochlorine pesticides (OCPs) in Guangzhou, China. Sci. Total Environ. 2010, 408, 3133–3138. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin: Boston, UK, 1962. [Google Scholar]
- Everett, C.J.; Thompson, O.M.; Dismuke, C.E. Exposure to DDT and diabetic nephropathy among Mexican Americans in the 1999–2004 National Health and Nutrition Examination Survey. Environ. Pollut. 2017, 222, 132–137. [Google Scholar] [CrossRef]
- Cohn, B.A.; Cirillo, P.M.; Terry, M.B. DDT and breast cancer: Prospective study of induction time and susceptibility windows. J. Natl. Cancer Inst. 2019, 111, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Scarselli, M.; Fasciani, I.; Maggio, R.; Giorgi, F. Dichlorodiphenyltrichloroethane (DDT) induced extracellular vesicle formation: A potential role in organochlorine increased risk of Parkinson’s disease. Acta Neurobiol. Exp. 2017, 77, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, N.; Breysse, C.M.R. Toxicological Profile for DDT, DDE, and DDD; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022; pp. 15–244. [Google Scholar]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- UNEP Persistent Organic Pollutants: A Global Issue, A Global Response. Available online: https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response#thedirtydozen (accessed on 29 November 2022).
- The World Bank. Available online: https://www.worldbank.org/en/country/malawi/overview (accessed on 29 November 2022).
- Lakudzala, D.D. Atrazine and metolachlor contamination in surface and ground water in the Zomba/Bvumbwe region in Malawi. Int. Lett. Chem. Phys. Astron. 2013, 1, 33–45. [Google Scholar] [CrossRef]
- Vizcaino, E.; Grimalt, J.O.; Fernández-Somoano, A.; Tardon, A. Transport of persistent organic pollutants across the human placenta. Environ. Int. 2014, 65, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Waliszewski, S.M.; Aguirre, A.A.; Infanzón, R.M.; Siliceo, J. Carry-over of persistent organochlorine pesticides through placenta to fetus. Salud Publica Mex. 2000, 42, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Sharma, E.; Mustafa, M.; Pathak, R.; Guleria, K.; Ahmed, R.S.; Vaid, N.; Banerjee, B. A case control study of gene environmental interaction in fetal growth restriction with special reference to organochlorine pesticides. Eur. J. Obstet. Gynecol. 2012, 161, 163–169. [Google Scholar] [CrossRef]
- Röllin, H.; Sandanger, T.; Hansen, L.; Channa, K.; Odland, J. Concentration of selected persistent organic pollutants in blood from delivering women in South Africa. Sci. Total Environ. 2009, 408, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Mwapasa, M.; Huber, S.; Chakhame, B.M.; Maluwa, A.; Odland, M.L.; Röllin, H.; Choko, A.; Xu, S.; Odland, J.Ø. Serum Concentrations of Selected Poly- and Perfluoroalkyl Substances (PFASs) in Pregnant Women and Associations with Birth Outcomes. A Cross-Sectional Study from Southern Malawi. Int. J. Environ. Res. Public Health 2023, 20, 1689. [Google Scholar] [CrossRef]
- The Centre de Toxicologie du Québec. Procedure for Collecting and Sending Plasma or Serum Samples; Institut National de Santé Publique du Québec: Quebec, QC, Canada, 2023. [Google Scholar]
- Huber, S.; Averina, M.; Brox, J. Automated sample preparation and GC-API-MS/MS as a powerful tool for analysis of legacy POPs in human serum and plasma. Anal. Methods 2020, 12, 912–929. [Google Scholar] [CrossRef]
- Steinholt, M.; Xu, S.; Ha, S.O.; Phi, D.T.; Odland, M.L.; Odland, J.Ø. Serum concentrations of selected organochlorines in pregnant women and associations with pregnancy outcomes. A cross-sectional study from two rural settings in Cambodia. Int. J. Environ. Res. Public Health 2020, 17, 7652. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent organic pollutants in food: Contamination sources, health effects and detection methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [Green Version]
- Rudge, C.V.; Sandanger, T.; Röllin, H.B.; Calderon, I.M.; Volpato, G.; Silva, J.L.; Duarte, G.; Neto, C.M.; Sass, N.; Nakamura, M.U. Levels of selected persistent organic pollutants in blood from delivering women in seven selected areas of São Paulo State, Brazil. Environ. Int. 2012, 40, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.S.; Cheslack-Postava, K.; Rantakokko, P.; Kiviranta, H.; Hinkka-Yli-Salomäki, S.; McKeague, I.W.; Surcel, H.-M.; Sourander, A. Association of maternal insecticide levels with autism in offspring from a national birth cohort. Am. J. Psychiatry 2018, 175, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.; Odland, J.Ø.; Phi, D.T.; Nieboer, E.; Sandanger, T.M. Maternal levels of organochlorines in two communities in southern Vietnam. Sci. Total Environ. 2009, 408, 225–232. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.-j.; Kim, S.; Choi, G.; Kim, S.; Park, J.; Shim, S.-s.; Lee, I.; Kim, S.; Moon, H.-B. Current status of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) exposure among mothers and their babies of Korea-CHECK cohort study. Sci. Total Environ. 2018, 618, 674–681. [Google Scholar] [CrossRef]
- Govarts, E.; Iszatt, N.; Trnovec, T.; de Cock, M.; Eggesbø, M.; Murinova, L.P.; van de Bor, M.; Guxens, M.; Chevrier, C.; Koppen, G. Prenatal exposure to endocrine disrupting chemicals and risk of being born small for gestational age: Pooled analysis of seven European birth cohorts. Environ. Int. 2018, 115, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Yin, S.; Tang, M.; Liu, K.; Yang, F.; Liu, W. Environmental exposure to DDT and its metabolites in cord serum: Distribution, enantiomeric patterns, and effects on infant birth outcomes. Sci. Total Environ. 2017, 580, 491–498. [Google Scholar] [CrossRef]
- Bravo, N.; Grimalt, J.O.; Chashchin, M.; Chashchin, V.P.; Odland, J.-Ø. Drivers of maternal accumulation of organohalogen pollutants in Arctic areas (Chukotka, Russia) and 4, 4′-DDT effects on the newborns. Environ. Int. 2019, 124, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Bravo, N.; Hansen, S.; Økland, I.; Garí, M.; Álvarez, M.V.; Matiocevich, S.; Odland, J.-Ø.; Grimalt, J.O. Influence of maternal and sociodemographic characteristics on the accumulation of organohalogen compounds in Argentinian women. The EMASAR study. Environ. Res. 2017, 158, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, X.; Lei, B.; Jing, Y.; Zhang, X.; Fang, X.; Yu, Y. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors. Environ. Pollut. 2018, 233, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, I.H.; Kvalem, H.E.; Haugen, M.; Brantsæter, A.L.; Meltzer, H.M.; Alexander, J.; Thomsen, C.; Frøshaug, M.; Bremnes, N.M.B.; Broadwell, S.L. Determinants of plasma PCB, brominated flame retardants, and organochlorine pesticides in pregnant women and 3 year old children in The Norwegian Mother and Child Cohort Study. Environ. Res. 2016, 146, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Pu, Y.; Tian, H.; Cheng, J.; Zhou, T.; Tao, Y.; Yuan, J.; Sun, X.; Mei, S. Concentrations of organochlorine pesticides in umbilical cord blood and related lifestyle and dietary intake factors among pregnant women of the Huaihe River Basin in China. Environ. Int. 2016, 92, 276–283. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Hessabi, M.; Dickerson, A.S.; Lee, M.; Bressler, J.; Tomechko, S.E.; Moreno, E.K.; Loveland, K.A.; Desai, C.C. Concentrations of polychlorinated biphenyls and organochlorine pesticides in umbilical cord blood serum of newborns in Kingston, Jamaica. Int. J. Environ. Res. Public Health 2016, 13, 1032. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Wu, Y.; Yin, S.; Li, J.; Zhao, Y.; Zhang, L.; Chen, H.; Liu, Y.; Yang, X.; Li, X. National survey of the levels of persistent organochlorine pesticides in the breast milk of mothers in China. Environ. Pollut. 2011, 159, 524–531. [Google Scholar] [CrossRef]
- Hu, L.; Luo, D.; Wang, L.; Yu, M.; Zhao, S.; Wang, Y.; Mei, S.; Zhang, G. Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. Sci. Total Environ. 2021, 753, 142028. [Google Scholar] [CrossRef]
- Aerts, R.; Van Overmeire, I.; Colles, A.; Andjelković, M.; Malarvannan, G.; Poma, G.; Den Hond, E.; Van de Mieroop, E.; Dewolf, M.-C.; Charlet, F. Determinants of persistent organic pollutant (POP) concentrations in human breast milk of a cross-sectional sample of primiparous mothers in Belgium. Environ. Int. 2019, 131, 104979. [Google Scholar] [CrossRef]
- Bawa, P.; Bedi, J.; Gill, J.; Aulakh, R.; Kumar, A.; Arora, K. Persistent organic pollutants residues in human breast milk from Bathinda and Ludhiana districts of Punjab, India. Arch. Environ. Contam. Toxicol. 2018, 75, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wang, D.; Ni, R.; Lin, Y.; Feng, C.; Xu, Q.; Jia, X.; Wang, G.; Zhou, Z. Organochlorine pesticides and their metabolites in human breast milk from Shanghai, China. Environ. Sci. Pollut. 2015, 22, 9293–9306. [Google Scholar] [CrossRef] [PubMed]
- Vukavić, T.; Miloradov, M.V.; Mihajlović, I.; Ristivojević, A. Human milk POPs and neonatal risk trend from 1982 to 2009 in the same geographic region in Serbia. Environ. Int. 2013, 54, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Jusko, T.A.; Koepsell, T.D.; Baker, R.J.; Greenfield, T.A.; Willman, E.J.; Charles, M.J.; Teplin, S.W.; Checkoway, H.; Hertz-Picciotto, I. Maternal DDT exposures in relation to fetal and 5-year growth. Epidemiology 2006, 17, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Wojtyniak, B.J.; Rabczenko, D.; Jönsson, B.A.; Zvezday, V.; Pedersen, H.S.; Rylander, L.; Toft, G.; Ludwicki, J.K.; Góralczyk, K.; Lesovaya, A. Association of maternal serum concentrations of 2, 2′, 4, 4′5, 5′-hexachlorobiphenyl (CB-153) and 1, 1-dichloro-2, 2-bis (p-chlorophenyl)-ethylene (p,p′-DDE) levels with birth weight, gestational age and preterm births in Inuit and European populations. J. Environ. Health 2010, 9, 56. [Google Scholar] [CrossRef] [Green Version]
POPs | % > DF | AM (SD) a | GM (95% CI) b | Median (Min–Max) |
---|---|---|---|---|
HCB | 99.8 | 102 (20.7) | 99.8 (97.4–104.19) | 102 (0.57–203) |
p,p′-DDE | 99.3 | 878 (1575) | 405 (359.5–456.7) | 478 (0.10–23,600) |
t-NC | 98.1 | 73.7 (126) | 35.3 (31.7–39.3) | 34.5 (0.01–1240) |
p,p′-DDT | 86.9 | 81.3 (136) | 30.9 (27.1–35.2) | 35.5 (0.43–1700) |
Oxychlordane | 84.5 | 63.7 (102) | 29.7 (26.6–33.1) | 34.4 (0.05–1050) |
cis-NC | 84 | 13.1 (26.6) | 4.3 (3.8–5.0) | 5.4 (0.02–203) |
o,p′-DDT | 73.4 | 9.51 (16.0) | 3.3 (2.8–3.8) | 5.10 (0.11–163) |
o,p′-DDE | 58.4 | 0.55 (0.8) | 0.34 (0.32–0.37) | 0.34 (0.04–8.9) |
Maternal Characteristics | HBC a | p′,p′-DDE a | t-NC a | p′,p′-DDT a | Oxychlordane a | Cis-NC a | o′,p′-DDT a | o′,p′-DDE a |
---|---|---|---|---|---|---|---|---|
Maternal age (years) | 0.001 | 0.06 ** | −0.043 ** | 0.026 * | 0.039 ** | −0.037 * | 0.001 | 0.008 |
Parity b | ||||||||
Para 1 | 0.068 * | −0.289 | −0.353 * | 0.355 | −0.377 * | −0.295 | 0.047 | 0.152 |
Multiparity | 0.041 | −1.068 ** | 0.695 ** | 0.276 | −0.724 ** | −0.701 ** | −0.131 | 0.023 |
Education of mothers c | 0.058 * | 0.600 ** | 0.154 | 0.835 ** | 0.136 | 0.273 | 0.446 * | 0.291 ** |
Area of residence d (urban vs. rural) | −0.12 ** | −0.21 | 0.343 * | −1.129 ** | 0.429 ** | 0.508 * | −0.25 | −0.308 ** |
Source of drinking water e | ||||||||
Lake/shallow well | −0.12 ** | −0.113 | 0.533 ** | −1.174 ** | 0.486 * | 0.790 ** | −0.28 | −0.248 * |
Borehole | −0.080 ** | −0.27 | 0.399 * | −0.816 ** | 0.433 * | 0.561 * | −0.139 | −0.391 ** |
Previous breast-feeding f | 0.102 | −0.643 ** | −0.575 ** | 0.164 | −0.620 ** | −0.568 ** | -0.035 | 0.044 |
Beef consumption frequency g | 0.090 * | 0.111 | −0.181 | 0.544 * | −0.231 | −0.211 | −0.03 | 0.209 * |
Egg consumption frequency h | 0.003 | 0.115 | 0.018 | 0.284 | −0.025 | −0.017 | 0.022 | 0.218 * |
Fresh fish consumption frequency i | 0.004 | 0.186 | 0.178 | 0.157 | 0.127 | 0.313 * | −0.027 | 0.221 * |
Dry fish consumption frequency j | 0.024 | −0.25 | 0.206 | −0.341 | −0.009 | 0.032 | −0.342 | −0.102 |
Goat consumption frequency k | 0.076 * | 0.212 | −0.124 | 0.351 * | −0.173 | −0.165 | 0.041 | 0.206 * |
Green vegetables consumption frequency l | 0.167 | 1.288 | 1.356 | 1.012 | 1.079 | 2.439 * | 0.562 | 0.183 |
Maternal Characteristics | HBC a | p′,p′-DDE a | t-NC a | p′,p′-DDT a | Oxychlordane a | Cis-NC a | o′,p′-DDT a | o′,p′-DDE a |
---|---|---|---|---|---|---|---|---|
Maternal age (years) | −0.003 | −0.005 | −0.017 | 0.037 * | −0.057 | −0.003 | 0.042 * | 0.009 * |
Parity b | ||||||||
Para 1 | 0.048 | 0.119 | −0.057 | −1.103 | 0.054 | 0.046 | −0.429 | −0.112 |
Multiparity | 0.051 | −0.497 | −0.225 | −0.356 | −0.144 | −0.229 | −0.927 * | −0.375 |
Education of mothers c | 0.023 | 0.341 * | 0.181 | 0.578 ** | 0.178 | 0.397 * | 0.436 * | 0.196 * |
Area of residence d (urban vs rural) | −0.101 | −0.391 | −0.47 | −1.302 ** | −0.036 | −0.499 | −0.591 | −0.206 |
Source of drinking water e | ||||||||
Lake/shallow well | 0.003 | 0.182 | 0.929 ** | 0.11 | 0.475 | 1.311 ** | 0.205 | −0.038 |
Borehole | 0.028 | −0.03 | 0.742 * | 0.397 | 0.388 | 1.026 * | 0.324 | −0.145 |
Previous breast-feeding f | −0.013 | −0.643 ** | −0.2 | 0.026 | −0.404 | −0.225 | 0.342 | 0.16 |
Beef consumption frequency g | 0.017 | −0.189 | −0.071 | −0.103 | −0.077 | −0.016 | −0.211 | −0.017 |
Goat consumption frequency h | 0.031 | 0.189 | 0.048 | −0.164 | −0.01 | −0.007 | −0.172 | 0.052 |
Outcomes | Maternal Serum POP Concentrations a | |||
---|---|---|---|---|
POP | n | β (95% CI) | p-Value | |
HCB | Head circumference (cm) | 492 | 0.005 (−0.008 to 0.018) | 0.447 |
Birth length (cm) | 492 | 0.001 (−0.005 to 0.007) | 0.824 | |
Birth weight (kg) | 522 | 0.001 (−0.055 to 0.057) | 0.975 | |
Gestational age (weeks) | 492 | −0.001 (−0.189 to 0.016) | 0.871 | |
Ponderal index (kg/m3) | 491 | −0.00007 (−0.0002 to −0.00007) | 0.32 | |
p,p′-DDE | Head circumference (cm) | 492 | −0.018 (−0.074 to 0.039) | 0.542 |
Birth length (cm) | 492 | −0.005 (−0.034 to 0.023) | 0.708 | |
Birth weight (kg) | 522 | −0.043 (−0.303 to 0.217) | 0.744 | |
Gestational age (weeks) | 492 | 0.087 (0.008 to 0.166) | 0.031 | |
Ponderal index (kg/m3) | 491 | 0.00029 (−0.00034 to 0.0009) | 0.367 | |
t-NC | Head circumference (cm) | 492 | −0.053 (−0.105 to −0.0015) | 0.044 |
Birth length (cm) | 492 | −0.014 (−0.040 to 0.01199) | 0.288 | |
Birth weight (kg) | 522 | 0.073 (−0.167 to 0.313) | 0.548 | |
Gestational age (weeks) | 492 | −0.002 (−0.074 to 0.069) | 0.949 | |
Ponderal index (kg/m3) | 491 | 0.0000151 (−0.001 to 0.001) | 0.96 | |
p,p′-DDT | Head circumference (cm) | 492 | 0.006 (−0.055 to 0.067) | 0.848 |
Birth length (cm) | 492 | −0.013 (−0.043 to 0.017) | 0.401 | |
Birth weight (kg) | 522 | 0.139 (−0.139 to 0.417) | 0.325 | |
Gestational age (weeks) | 492 | 0.110 (0.026 to 0.193) | 0.01 | |
Ponderal index (kg/m3) | 491 | 0.0003 (−0.0004 to 0.0009) | 0.45 | |
Oxychlordane | Head circumference (cm) | 492 | −0.071 (−0.123 to −0.017) | 0.01 |
Birth length (cm) | 492 | −0.0187 (−0.045 to 0.007) | 0.159 | |
Birth weight (kg) | 522 | 0.1288 (−0.119 to 0.376) | 0.307 | |
Gestational age (weeks) | 492 | 0.016 (−0.059 to 0.092) | 0.668 | |
Ponderal index (kg/m3) | 491 | 0.0002 (−0.0004 to 0.0008) | 0.575 | |
cis-NC | Head circumference (cm) | 492 | −0.070 (−0.140 to −0.006) | 0.048 |
Birth length (cm) | 492 | −0.029 (−0.063 to 0.005) | 0.108 | |
Birth weight (kg) | 522 | 0.150 (−0.172 to 0.472) | 0.36 | |
Gestational age (weeks) | 492 | 0.033 (−0.066 to 0.131) | 0.515 | |
Ponderal index (kg/m3) | 491 | 0.0002 (−0.001 to 0.001) | 0.578 | |
o,p′-DDT | Head circumference (cm) | 492 | 0.049 (−0.022 to 0.120) | 0.173 |
Birth length (cm) | 492 | −0.016 (−0.051 to 0.0187) | 0.363 | |
Birth weight (kg) | 522 | 0.199 (−0.123 to 0.521) | 0.225 | |
Gestational age (weeks) | 492 | 0.115 (0.016 to 0.213) | 0.022 | |
Ponderal index (kg/m3) | 491 | −0.0001 (−0.001 to 0.001) | 0.723 | |
o,p′-DDE | Head circumference (cm) | 492 | −0.009 (−0.046 to 0.028) | 0.617 |
Birth length (cm) | 492 | −0.006 (−0.0238 to 0.012) | 0.572 | |
Birth weight (kg) | 522 | 0.127 (−0.040 to 0.293) | 0.136 | |
Gestational age (weeks) | 492 | −0.004 (−0.047 to 0.055) | 0.88 | |
Ponderal index (kg/m3) | 491 | 0.000001 (−0.0004 to 0.0004) | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwapasa, M.; Huber, S.; Chakhame, B.M.; Maluwa, A.; Odland, M.L.; Ndhlovu, V.; Röllin, H.; Xu, S.; Odland, J.Ø. Predictors of Maternal Serum Concentrations for Selected Persistent Organic Pollutants (POPs) in Pregnant Women and Associations with Birth Outcomes: A Cross-Sectional Study from Southern Malawi. Int. J. Environ. Res. Public Health 2023, 20, 5289. https://doi.org/10.3390/ijerph20075289
Mwapasa M, Huber S, Chakhame BM, Maluwa A, Odland ML, Ndhlovu V, Röllin H, Xu S, Odland JØ. Predictors of Maternal Serum Concentrations for Selected Persistent Organic Pollutants (POPs) in Pregnant Women and Associations with Birth Outcomes: A Cross-Sectional Study from Southern Malawi. International Journal of Environmental Research and Public Health. 2023; 20(7):5289. https://doi.org/10.3390/ijerph20075289
Chicago/Turabian StyleMwapasa, Mphatso, Sandra Huber, Bertha Magreta Chakhame, Alfred Maluwa, Maria Lisa Odland, Victor Ndhlovu, Halina Röllin, Shanshan Xu, and Jon Øyvind Odland. 2023. "Predictors of Maternal Serum Concentrations for Selected Persistent Organic Pollutants (POPs) in Pregnant Women and Associations with Birth Outcomes: A Cross-Sectional Study from Southern Malawi" International Journal of Environmental Research and Public Health 20, no. 7: 5289. https://doi.org/10.3390/ijerph20075289
APA StyleMwapasa, M., Huber, S., Chakhame, B. M., Maluwa, A., Odland, M. L., Ndhlovu, V., Röllin, H., Xu, S., & Odland, J. Ø. (2023). Predictors of Maternal Serum Concentrations for Selected Persistent Organic Pollutants (POPs) in Pregnant Women and Associations with Birth Outcomes: A Cross-Sectional Study from Southern Malawi. International Journal of Environmental Research and Public Health, 20(7), 5289. https://doi.org/10.3390/ijerph20075289