The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants
Abstract
:1. Introduction
1.1. Combat Sports
1.2. The Determinants of Combat Sports Performance
1.3. Nature vs. Nurture in Combat Sports Performance
1.4. Genetic Polymorphisms and Sport Performance/Athletic Status
1.5. Bridging the Gaps in Combat Sports Genetics
2. Methods
2.1. Search Strategy
2.2. Databases and Keywords
2.3. Study Selection Criteria
2.4. Study Selection Process
2.5. Data Extraction
2.6. Quality Assessment
3. Results
Reference | Performance Type | Participants | Design | Genes (SNPs) | Results | |
---|---|---|---|---|---|---|
Previous Systematic Review | Youn et al. (2021) [31] | Total 14,313
| 18 full-text articles | 71 genes (109 SNPs) | 17 SNPs significant
| |
2021–2023 Studies | Leznicka et al. (2023) [36] | Psychophysiological/Pain Perception | Combat Athletes = 214 (Boxing, Karate, MMA) | CC | SCN9A (rs6746030) | Higher pain tolerance for GA and AA genotypes. |
Akazawa et al. (2022) [37] | Physiological | Combat Athletes = 94 (Judo, Wrestling, Boxing, Karate, Taekwondo, Fencing) | CC | ACTN3 (R577X) | RR frequency is higher in martial artists. R allele frequency increases in accordance with athletic status. | |
Fichna et al. (2021) [38] | Psychological | Combat Athletes = 305 (Not Specified) | CC | SLC6A2 (rs1805065) SYNE1 (rs2635438) | Positive association of minor allele T with success in combat sports. | |
Michałowska-Sawczyn et al. (2021) [39] | Psychological | Combat Athletes = 258 (MMA, Boxing, Judo, Wrestling, Karate, Kickboxing) | CC | DRD2 (rs1799732, rs107656, rs1800498, rs6276, rs1079597) ANKK1 (rs180049) | Higher CC genotype and major C allele in combat athletes. | |
Niewczas et al. (2021a) [40]/Humińska- Lisowska et al. (2022) [41] (Merged) | Psychological | Combat Athletes = 153 (MMA, Boxing, Judo, Wrestling, Jiu-Jitsu, Karate, Kickboxing) | CC | BDNF (rs10767664/rs2030323/rs6265) | Significant combined effect for martial arts/control and Conscientiousness and Extraversion scale for all BDNF genes. | |
Niewczas et al. (2021b) [42] | Psychological/Personality | Combat Athletes = 85 (MMA) | CC | DRD2 (rs1799732) | Significant effect of DRD2 rs1799732 genotype on MMA participants’ control and reward dependence. | |
Peplonska et al. (2021) [43] | Psychological | Combat Athletes = 308 (Not Specified) | CC | MYRF (20 SNPs) SOX10 (7 SNPs) OLIG2 (rs762178) | MYRF minor alleles rs7943728 and rs61747222 showed a correlation with higher levels of sports achievement. | |
Ponzi et al. (2021) [44] | Psychological | Combat Athletes = 65 (Karate) | Cohort | SLC6A4 (5HTTLPR) | Salivary cortisol levels 10 min before the competition were higher in losers and in athletes with the S allele. | |
Studies Before 2021 | De Oliveira Rocha et al. (2020) [45] | Physiological | Combat Athletes = 28 (Wrestling, Taekwondo) | CC | ACE I-D | Higher I allele for male only fighters. |
Bondareva et al. (2019) [46] | Physiological | Combat Athletes = 36 (Sambo, Boxing, Judo, Taekwondo) | CC | UCP1 (rs1800592) UCP2 (rs660339) UCP3 (rs1800849 | Higher major allele UCP1 (A) and UCP2 (C) in martial artists compared to controls. | |
Cherepkova et al. (2018) [47] | Psychological | Combat Athletes = 107 (MMA) | CC | SLC6A4 (VNTR ID) | Higher D allele frequency in the groups of convicts and MMA fighters than controls. | |
Leźnicka et al. (2018) [48] | Psychophysiological/Pain Perception | Combat Athletes = 99 (Boxing) | CC | SCN9A (rs6746030) | No difference in allele or genotype frequency. | |
Batavani et al. (2017) [49] | Physiological | Combat Athletes = 172 (Karate) | CC | CK-MM (rs8111989) | Higher heterozygous AG genotype in professional than armature karateka athletes. | |
Marziliano et al. (2017) [50] | Physiological | Combat Athletes = 117 (Muay Thai) | CC | ACTN3 R577X (rs1815739) | Heterozygous RX genotype higher in Muay Thai fighters. | |
Itaka et al. (2017) [51] | Physiological | Combat Athletes = 129 (Judo) | CC | ACTN3 R577X (rs1815739) ACE I/D | ACTN3 RR genotype was correlated with faster wins in matches. No difference for the ACE gene. | |
Bondareva et al. (2016) [52] | Physiological | Combat Athletes = 220 (Sambo) | CC | EPAS1 (rs1867785) | Higher minor A allele in professional sambo wrestlers than controls. | |
Itaka et al. (2016) [53] | Physiological | Combat Athletes = 129 (Judo) | CC | ACE I/D | No difference in frequency or athletes’ endurance. | |
Butovskaya et al. (2015) [54] | Psychological | Combat Athletes = 106 (Wrestling, Judo, Sambo) | CC | SLC6A4 5-HTTL (rs25531) MAOA (VNTR) 5-HT1A (rs6295) 5-HT2A (rs6311) | A combined effect of the level of sports achievement and 5 HT2A genotypes was found, as well as gender and 5 HT1A genotypes, on the self-rating for conscientiousness. | |
Hermine et al. (2015) [55] | Physiological | Combat Athletes = 34 (Wrestling) | CC | HFE (H63D, C282Y, S65C) | Very high HFE mutation frequency in international-level athletes and fighters compared to controls. | |
Gabbasov et al. (2013) [56] | Physiological | Combat Athletes = 86 (Judo) | CC | HIF1A (rs11549465) | Higher 582Ser allele frequency in wrestlers and weightlifters than non-strength control subjects. | |
Injury-Related | Jowko et al. (2023) [57] | Bone Strength | Combat Athletes = 37 (Wrestling, MMA) | CC | VDR ApaI, rs 7975232 BsmI, rs1544410 FokI rs2228570 COLIA1 rs1800012 CALCR rs1801197 SOD1 rs2234694 SOD2 rs4880 GPx rs1050450 | FokI AG and CALCR AA genotypes associated with greater bone density response to sports training. |
Kwasniak et al. (2018) [58] | Joint or Spinal Injury | Combat Athletes = 108 (Judo) | CS | ACE (I/D) ADRB2 (Arg16Gly, Gln27Glu) MSTN (K153R) | ACE I allele may predispose individuals to joint injuries and ADRB2 Gln allele may protect individuals from spinal injuries. | |
Banks et al. (2017) [59] | Concussion | Combat Athletes = 193 (Boxing, MMA, Other) | CC | APOE | No relationship was found. | |
Koyama et al. (2017) [60] | Disc Degeneration | Combat Athletes = 215 (Wrestling) | CS | COL11A1 rs1676486 | COL11A1 CC genotype was significantly correlated with cervical disc degeneration. |
Lead Author | Date | Design | Case Selection (Max Score 3) | Case Sample Size (Max Score 1) | Control Selection (Max Score 1) | Control Sample Size (Max Score 1) | Gold-Standard Procedures (Max Score 1) | Sample Racial Homogeneity (Max Score 1) | HWE (Max Score 2) | Total Score (*/10) |
---|---|---|---|---|---|---|---|---|---|---|
Leznicka [36] | 2023 | CC | * | * | * | * | * | * | ** | 8/10 |
Akazawa [37] | 2022 | CC | ** | * | * | * | * | * | * | 8/10 |
Fincha [38] | 2021 | CC | *** | * | * | * | * | * | ** | 10/10 |
Michałowska-Sawczyn [39] | 2021 | CC | ** | * | * | * | * | * | _ | 7/10 |
Niewczas/Humińska-Lisowska (Merged) [40,41] | 2022 | CC | ** | * | * | * | * | * | ** | 9/10 |
Niewczas [42] | 2021 | CC | ** | * | * | * | * | * | ** | 9/10 |
Peplonska [43] | 2021 | CC | ** | * | * | * | * | * | * | 8/10 |
Ponzi [44] | 2021 | Cohort | * | * | * | _ | * | * | _ | 5/10 |
De Oliveira Rocha [45] | 2020 | CC | ** | _ | * | _ | * | * | * | 6/10 |
Bondareva [46] | 2019 | CC | ** | _ | * | * | * | * | * | 7/10 |
Cherepkova [47] | 2018 | CC | ** | * | * | * | * | * | * | 8/10 |
Leznicka [48] | 2018 | CC | *** | * | _ | * | * | * | ** | 9/10 |
Batavani [49] | 2017 | CC | ** | * | * | * | * | * | _ | 7/10 |
Marziliano [50] | 2017 | CC | ** | * | * | * | * | * | ** | 9/10 |
Itaka [51] | 2017 | CC | ** | _ | * | * | * | * | _ | 6/10 |
Bondareva [52] | 2016 | CC | *** | * | * | * | * | * | _ | 8/10 |
Itaka [53] | 2016 | CC | ** | * | * | * | * | * | ** | 9/10 |
Butovskaya [54] | 2015 | CC | *** | * | * | * | * | * | _ | 8/10 |
Hermine [55] | 2015 | CC | *** | _ | * | * | * | * | _ | 7/10 |
Gabbasov [56] | 2013 | CC | *** | * | * | * | * | _ | ** | 9/10 |
Jowko [57] | 2023 | CC | * | _ | * | * | * | * | _ | 5/10 |
Kwasniak [58] | 2018 | CS | ** | _ | * | * | * | * | * | 7/10 |
Banks [59] | 2017 | CC | ** | * | * | * | * | * | _ | 7/10 |
Koyama [60] | 2017 | CS | * | * | * | * | * | * | ** | 8/10 |
Reference (Phenotype) | Candidate Allele or Genotype | Frequency in Combat Athletes | Frequency in Control | Statistics and p-Value |
---|---|---|---|---|
Jowko et al. (2023) [57] Injury ↓ | CALCR AA genotype greater BMD response to sports training. | 61.70% | 50.60% | p < 0.05 * |
Leznicka et al. (2023) [36] Psychophysiological | SCN9A rs6746030 GG genotype. | 92.80% | 66.70% | p = 0.02 * |
Higher pain tolerance than AG and AA. | ||||
Akazawa et al. (2022) [37] Physiological | ACTN3 rs1815739 R577X R/R genotype compared to control and endurance. | 32% | 20% | OR = 1.836, p < 0.05 * |
Fichna et al. (2021) [38] Psychological | SLC6A2 rs1805065 T allele modulating mood, arousal, memory, learning, and pain perception. | N/S | N/S | OR = 6.56, p = 0.010 ** |
Michałowska-Sawczyn et al. (2021) [39] Psychological/personality | DRD2 rs1079597 C allele. | 86.00% | 82.00% | p = 0.034 * |
Niewczas et al. (2021a) [40]/Humińska-Lisowska et al. (2022) [41] (Merged) Psychological | BDNF rs10767664 T/T genotype. | 91.40% | 81.60% | p = 0.044 * |
BDNF rs2030323 G/G genotype. | 88.10% | 69.30% | p = 0.029 * | |
Peplonska et al. (2021) [43] Psychological | MYRF rs61747222 A allele less frequent than G allele. | N/S | N/S | OR = 0.6, p = 0.046 * |
MYRF rs198459 A allele is less frequent than the G allele. | N/S | N/S | OR = 0.58, p = 0.046 * | |
Ponzi et al. (2021) [44] Psychological | SLC6A4 5HTTLPR S/S genotype has higher cortisol than the L/L genotype. | N/S | N/S | F = 4.51 p < 0.05 * |
Bondareva et al. (2019) [46] Physiological | UPC1 A allele higher than G allele. | 83.30% | Other Sports = 70.1% | p < 0.05 * |
UPC2 C allele higher than the T allele, reduced oxidative stress from aerobic metabolism. Thus, higher lactate tolerance. | 76.40% | Control = 59.3% | p < 0.05 * | |
Cherepkova et al. (2018) [47] Psychological/aggression | SLC6A4 (ID) D/D genotype, | 20.80% | 3.90% | OR = 6.5, p < 0.0001 *** |
SLC6A4 VNTR 10/12 genotype. | 55.7%. | 45.50% | p < 0.003 ** | |
Kwasniak et al. (2018) [58] Injury ↑ | ACE I/D genotype higher performance. | Elite = 66.7 | Non-elite = 39.5% | p < 0.05 * |
ADRB2 Glu27Gln genotype higher performance. | Elite = 83.3% | Non-elite = 63.2% | p < 0.05 * | |
ACE I/I genotype increased joint injuries. | Non-injury = 4.3% | Injury group = 33.8% | OR = 6.1, p = 0.005 ** | |
ADRB2 Glu27Gln genotype increased spinal injury risk. | Non-injury group = 13.1% | Injury group = 25.0% | p = 0.03 * | |
Batavani et al. (2017) [49] Physiological | CK-MM A/G genotype better performance. | 56.90% | 43.00% | p < 0.05 * |
Koyama et al. (2017) [60] Injury ↓ | COL11A1 (rs1676486) C/C genotype protective against disc degeneration. | No CDD group = 51.1% | CDD group = 37.8% | p = 0.035 * |
Marziliano et al. (2017) [50] Physiological | ACTN3 rs1815739, X allele higher. | 32.00% | 29.20% | p = 0.012 * |
Itaka et al. (2017) [51] Physiological/power | ACTN3 rs1815739, R allele faster in winning a match. | Fast winners = 82.0% | Slow winners = 16.7 | p < 0.01 ** |
Bondareva et al. (2016) [52] Physiological/endurance | EPAS1 (rs1867785) A allele. | Athletes = 38.2% | Non-athletes = 25.5% | p = 0.003 ** |
Winners = 40.2% | Losers = 36.9% | p < 0.05 * | ||
Butovskaya et al. (2015) [54] Psychology/personality | 5-HTTLPR S/S genotype higher conscientiousness. | 23.80% | 11.00% | p = 0.04 * |
Hermine et al. (2015) [55] Physiological | HFE mutations (H63D, C282Y, S65C). | N/S | N/S | OR = 3 p < 0.01 ** |
Gabbasov et al. (2013) [56] Physiological | HIF1A 582Ser allele. | 15.70% | 7.50% | p = 0.0002 *** |
4. Discussion
4.1. Genetics in Combat Sports
4.1.1. Physiological Genetics
4.1.2. Psychological Genetics
4.1.3. Injury-Related Genetics
4.2. Limitations, Future Directions, and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, X.; Zhang, Z.; Jin, T.; Shi, P. Effects of open and closed skill exercise interventions on executive function in typical children: A meta-analysis. BMC Psychol. 2023, 11, 420. [Google Scholar] [CrossRef]
- Gu, Q.; Zou, L.; Loprinzi, P.D.; Quan, M.; Huang, T. Effects of Open Versus Closed Skill Exercise on Cognitive Function: A Systematic Review. Front. Psychol. 2019, 10, 467457. [Google Scholar] [CrossRef]
- Holfelder, B.; Klotzbier, T.J.; Eisele, M.; Schott, N. Hot and Cool Executive Function in Elite- and Amateur- Adolescent Athletes From Open and Closed Skills Sports. Front. Psychol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Asai, T.; Abe, D.; Doi, H.; Tanaka, C.; Ohishi, K.; Maeda, H.; Wada, T.; Takahashi, Y.; Nakahata, Y.; Shinohara, K. Characteristics of the BDNF Val66Met polymorphism in competitive swimmers and judo athletes. Acta Medica Nagasaki. 2020, 64, 23–29. [Google Scholar]
- Rice, S.G. Medical Conditions Affecting Sports Participation. Pediatrics 2008, 121, 841–848. [Google Scholar] [CrossRef]
- Mînjină, B. The Mental Skills Training in Combat Sports. Studia Ubb Educatio Artis Gymn 2014, 2, 51–57. Available online: http://studia.ubbcluj.ro/download/pdf/educatio/2014_2/04.pdf (accessed on 15 July 2023).
- Bompa, T.O.; Haff, G.G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Leeds, UK, 2009. [Google Scholar]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E. Towards a determination of the physiological characteristics distinguishing successful mixed Martial arts athletes: A Systematic Review of Combat Sport Literature. Sports Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- Plush, M.G.; Guppy, S.N.; Nosaka, K.; Barley, O.R. Exploring the physical and physiological characteristics relevant to mixed martial arts. Strength Cond. J. 2021, 44, 52–60. [Google Scholar] [CrossRef]
- Barley, O.R.; Harms, C. Profiling Combat sports athletes: Competitive history and outcomes according to sports type and current level of competition. Sports Med. Open 2021, 7, 63. [Google Scholar] [CrossRef]
- Franchini, E.; Del Vecchio, F.B.; Matsushigue, K.A.; Artioli, G.G. Physiological profiles of elite judo athletes. Sports Med. 2011, 41, 147–166. [Google Scholar] [CrossRef]
- Bojanić, Ž.; Nedeljković, J.; Šakan, D.; Mitić, P.; Milovanović, I.; Drid, P. Personality traits and Self-Esteem in combat and team sports. Front. Psychol. 2019, 10, 2280. [Google Scholar] [CrossRef]
- Liew, G.C.; Kuan, G.; Chin, N.S.; Hashim, H.A. Mental toughness in sport. Ger. J. Exerc. Sport Res. 2019, 49, 381–394. [Google Scholar] [CrossRef]
- Zhang, Z.; Piras, A.; Chen, C.; Kong, B.; Wang, D. A comparison of perceptual anticipation in com-bat sports between experts and non-experts: A systematic review and meta-analysis. Front. Psychol. 2022, 13, 961960. [Google Scholar] [CrossRef]
- Gronek, P.; Wieliński, D.; Gronek, J. Genetic and non-genetic determinants of aggression in combat sports. Open Life Sci. 2014, 10, 7–18. [Google Scholar] [CrossRef]
- Kostorz, K.; Sas-Nowosielski, K. Aggression dimensions among athletes practising martial arts and combat sports. Front. Psychol. 2021, 12, 696943. [Google Scholar] [CrossRef] [PubMed]
- Modestino, E.J.; Blum, K.; Dennen, C.A.; Downs, B.W.; Bagchi, D.; Llanos-Gomez, L.; Elman, I.; Baron, D.; Thanos, P.K.; Badgaiyan, R.D.; et al. Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. J. Pers. Med. 2022, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Monson, T.A.; Brasil, M.F.; Hlusko, L.J. Allometric variation in modern humans and the relationship between body proportions and elite athletic success. J. Anthropol. Sport Phys. Educ. 2018, 2, 3–8. [Google Scholar] [CrossRef]
- Schwartz, J.; Takito, M.Y.; Del Vecchio, F.B.; Antonietti, L.S.; Franchini, E. Health-related physical fitness in martial arts and combat sports practitioners. Sport Sci. Health 2015, 11, 171–180. [Google Scholar] [CrossRef]
- Spanias, C.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Anthropometric and Physiological Profile of Mixed Martial art Athletes: A Brief review. Sports 2019, 7, 146. [Google Scholar] [CrossRef]
- Pollet, T.V.; Stulp, G.; Groothuis, T.G.G. Born to win? Testing the fighting hypothesis in realistic fights: Left-handedness in the Ultimate Fighting Championship. Anim. Behav. 2013, 86, 839–843. [Google Scholar] [CrossRef]
- Georgiades, E.; Klissouras, V.; Baulch, J.; Wang, G.; Pitsiladis, Y. Why nature prevails over nurture in the making of the elite athlete. BMC Genom. 2017, 18, 835. [Google Scholar] [CrossRef] [PubMed]
- Hawke, T.J.; Garry, D.J. Myogenic satellite cells: Physiology to molecular biology. J. Appl. Physiol. 2001, 91, 534–551. [Google Scholar] [CrossRef] [PubMed]
- Macnamara, B.N.; Hambrick, D.Z.; Oswald, F.L. Deliberate Practice and Performance in music, games, sports, Education, and Professions: A Meta-Analysis. Psychol. Sci. 2014, 25, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Papadimitriou, I.; Lidor, R.; Eynon, N. Nature versus Nurture in Determining Athletic Ability. In Medicine and Sport Science; Karger: Berlin, Germany, 2016; pp. 15–28. [Google Scholar] [CrossRef]
- Schutte, N.; Nederend, I.; Hudziak, J.J.; Bartels, M.; De Geus, E.J.C. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol. Genom. 2016, 48, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Hall, E.; Semenova, E.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. In Advances in Clinical Chemistry; Elsevier BV: Amsterdam, The Netherlands, 2022; pp. 215–263. [Google Scholar] [CrossRef]
- Semenova, E.; Hall, E.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The Human Gene Map for Performance and Health-Related Fitness Phenotypes. Med. Sci. Sports Exerc. 2009, 41, 34–72. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Miller, B.; Kim, S.; Leelaprachakul, N.; Kikuchi, N.; Yen, K.; Cohen, P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes 2023, 14, 286. [Google Scholar] [CrossRef] [PubMed]
- Youn, B.Y.; Ko, S.G.; Kim, J.Y. Genetic basis of elite combat sports athletes: A systematic review. Biol. Sport 2021, 38, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Babic, M.; Kezic, A.; Cular, D. The Future of Genetic Testing in Taekwondo: Opportunities and Challenges. Phys. Act. Rev. 2023, 11, 21–33. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. Available online: www.covidence.org (accessed on 1 June 2023).
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; Von Elm, E.; Khoury, M.J.; Cohen, B.; Smith, G.D.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)-an extension of the STROBE statement. Genet. Epidemiol. 2009, 33, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Leźnicka, K.; Pawlak, M.; Sawczuk, M.; Gasiorowska, A.; Leońska-Duniec, A. SCN9A rs6746030 Polymorphism and Pain Perception in Combat Athletes and Non-Athletes. Genes 2023, 14, 733. [Google Scholar] [CrossRef]
- Akazawa, N.; Ohiwa, N.; Shimizu, K.; Suzuki, N.; Kumagai, H.; Fuku, N.; Suzuki, Y. The association of ACTN3 R577X polymorphism with sports specificity in Japanese elite athletes. Biol. Sport 2022, 39, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Fichna, J.P.; Humińska-Lisowska, K.; Safranow, K.; Adamczyk, J.G.; Cięszczyk, P.; Zekanowski, C.; Berdyński, M. Rare Variant in the SLC6A2 Encoding a Norepinephrine Transporter Is Associated with Elite Athletic Performance in the Polish Population. Genes 2021, 12, 919. [Google Scholar] [CrossRef]
- Michałowska-Sawczyn, M.; Chmielowiec, K.; Chmielowiec, J.; Trybek, G.; Masiak, J.; Niewczas, M.; Cięszczyk, P.; Bajorek, W.; Król, P.; Grzywacz, A. Analysis of selected variants of DRD2 and ANKK1 genes in combat athletes. Genes 2021, 12, 1239. [Google Scholar] [CrossRef]
- Niewczas, M.; Grzywacz, A.; Leźnicka, K.; Chmielowiec, K.; Chmielowiec, J.; Maciejewska-Skrendo, A.; Ružbarský, P.; Masiak, J.; Czarny, W.; Cięszczyk, P. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among MMA Athletes. Genes 2021, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Humińska-Lisowska, K.; Chmielowiec, J.; Chmielowiec, K.; Niewczas, M.; Lachowicz, M.; Cięszczyk, P.; Masiak, J.; Strońska-Pluta, A.; Michałowska-Sawczyn, M.; Maculewicz, E.; et al. Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes. Int. J. Environ. Res. Public Health 2022, 19, 9732. [Google Scholar] [CrossRef]
- Niewczas, M.; Król, P.; Czarny, W.; Bajorek, W.; Rzepko, M.; Drozd, S.; Płonka, A.; Drozd, M.; Czaja, R.; Błach, W.; et al. Association analysis of polymorphic variants of the BDNF gene in athletes. Genes 2021, 12, 1340. [Google Scholar] [CrossRef]
- Pepłońska, B.; Piestrzyńska-Kajtoch, A.; Humińska-Lisowska, K.; Adamczyk, J.G.; Siewierski, M.; Gurgul, A.; Fornal, A.; Michałowska-Sawczyn, M.; Zekanowski, C.; Cięszczyk, P.; et al. Common myelin regulatory factor gene variants predisposing to excellence in sports. Genes 2021, 12, 262. [Google Scholar] [CrossRef]
- Ponzi, D.; Dadomo, H.; Filonzi, L.; Palanza, P.; Pelosi, A.; Ceresini, G.; Parmigiani, S.; Marzano, F. Cortisol, temperament and serotonin in Karate Combats: An Evolutionary Psychobiological perspective. Adapt. Hum. Behav. Physiol. 2021, 8, 10–27. [Google Scholar] [CrossRef]
- De Oliveira Rocha, A.W.; Nascimento, W.M.D.; De Oliveira, C.M.C.; Neto, J.M.P.; Nascimento, O.V.D.; Santos, J.O.L.D.; Viera, É.P.; Brunetta, H.S.; Da Mota Pontes, I.; Filho, S.A. Frequency of gene ACE I polymorphism ID in athletes of different sports. Rev. Bras. De Med. Do Esporte 2020, 26, 107–112. [Google Scholar] [CrossRef]
- Bondareva, E.A.; Bleer, A.N.; Godina, E.Z. Association between G/A—Polymorphism of EPAS1 gene and the maximal level of oxygen consumption in Russian athletes. Fiziol. Cheloveka. 2016, 4, 120–124. [Google Scholar]
- Cherepkova, E.B.; Maksimov, V.V.; Aftanas, L.I. Polymorphism of serotonin transporter gene in male subjects with antisocial behavior and MMA fighters. Transl. Psychiatry 2018, 8, 248. [Google Scholar] [CrossRef]
- Leźnicka, K.; Gronek, P.; Kurzawski, M.; Cięszczyk, P.; Malinowski, D.; Żmijewski, P. Is pain tolerance in boxers altered by nucleotide polymorphism rs6746030 in the SCN9A gene. Arch. Budo 2018, 14. Available online: http://archbudo.com/view/abstract/id/11578 (accessed on 15 July 2023).
- Batavani, M.R.; Marandi, S.M.; Ghaedi, K.; Esfarjani, F. Comparison of Muscle-Specific Creatine Kinase (CK-MM) Gene Polymorphism (rs8111989) Among Professional, Amateur Athletes and Non-athlete Karatekas. Asian J. Sports Med. 2017, 8, 8e43210. [Google Scholar] [CrossRef]
- Marziliano, N.; Fiorilli, G.; Casu, G.; La Delfa, G.; David, O.; Damiana, F.; Paola, B.; Iuliano, E.; Ardissino, M.; Intrieri, M. Prevalence of the RR genotypes of the locus ACTN3-R577X in Italian Muay Thai elite fighters. Med. Dello Sport 2017, 70, 503–511. [Google Scholar] [CrossRef]
- Itaka, T.; Tomizawa, Y.; Inoue, K.; Agemizu, K.; Aruga, S.; Machida, S. ACTN3 R577X gene poly-morphism may play a role to determine the duration of judo matches. Trends Sport Sci. 2017, 2, 67–71. [Google Scholar]
- Bondareva, E.A.; Parfeteva, O.N.; Son’kin, V.D. Variation in the Uncoupling Proteins Genes in Different Sports. In Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support icSPORTS, Vienna, Austria, 20–21 September 2019; Volume 1, pp. 38–46. [Google Scholar] [CrossRef]
- Itaka, T.; Agemizu, K.; Aruga, S.; Machida, S. Judo status is not associated with the angiotensin-converting enzyme insertion/deletion polymorphism in Japanese judo athletes. Arch Budo 2016, 12, 61–67. [Google Scholar]
- Butovskaya, P.R.; Lazebnij, O.E.; Fekhretdinova, D.I.; Vasil’ev, V.A.; Prosikova, E.A.; Lysenko, V.V.; Udina, I.G.; Butovskaya, M.L. The relationship between polymorphism of four serotonic genes (5-HTTL, 5-HT1A, 5-HT2A, and MAOA) and personality traits in wrestlers and control group. Mol. Genet. Microbiol. Virol. 2015, 30, 165–172. [Google Scholar] [CrossRef]
- Hermine, O.; Dine, G.; Genty, V.; Marquet, L.; Fumagalli, G.; Tafflet, M.; Guillem, F.; Van Lierde, F.; Rous-seaux-Blanchi, M.; Palierne, C.; et al. Eighty percent of French sport winners in Olympic, World and Europeans competitions have mutations in the hemochromatosis HFE gene. Biochimie 2015, 119, 1–5. [Google Scholar] [CrossRef]
- Gabbasov, R.; Apxипoвa, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The HIF1A gene Pro582SER polymorphism in Russian strength athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef]
- Jówko, E.; Długołęcka, B.; Cieśliński, I.; Kotowska, J. Polymorphisms in genes encoding VDR, CALCR and antioxidant enzymes as predictors of bone tissue condition in young, healthy men. Int. J. Mol. Sci. 2023, 24, 3373. [Google Scholar] [CrossRef] [PubMed]
- Kwaśniak, K.; Myszka, A.; Czarnik, J.; Tabarkiewicz, J. The contribution of selected variants in ACE, MSTN and ADRB2 genes in the achievements of judo practitioners. Arch. Budo 2018, 14. Available online: http://archbudo.com/view/abstract/id/12073 (accessed on 15 July 2023).
- Banks, S.J.; Miller, J.B.; Rissman, R.A.; Bernick, C. Lack of influence of apolipoprotein E status on cognition or brain structure in professional fighters. J. Neurotrauma 2017, 34, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Nakazato, K.; Maeda, S.; Kikuchi, N.; Matsumoto, S.; Hiranuma, K. Association of COL11A1 4603C/T polymorphism with cervical disc degeneration in collegiate wrestlers. J. Sports Med. Phys. Fit. 2018, 58, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E. Born to fight? Genetics and combat sports. Rev. De Artes Marciales Asiáticas 2014, 9, 1. [Google Scholar] [CrossRef]
- Arjmand, S.; Khaledi, N.; Fayazmilani, R.; Lotfi, A.S.; Tavana, H. Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene 2017, 11, 81–84. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Souza-Junior, T.P.; Lancha, A.H. Association study of performance-related polymorphisms in Brazilian combat-sport athletes highlights variants in the GABPB1 gene. Physiol. Genom. 2021, 53, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lee, N.; Park, S. Interaction of ACTN3 gene polymorphism and muscle imbalance effects on kinematic efficiency in combat sports athletes. J. Exerc. Nutr. Biochem. 2016, 20, 1–7. [Google Scholar] [CrossRef]
- Bueno, J.C.A.; Faro, H.; Lenetsky, S.; Gonçalves, A.F.; Dias, S.; Ribeiro, A.; Da Silva, B.V.C.; Filho, C.A.C.; De Vasconcelos, B.M.; Serrão, J.C.; et al. Exploratory Systematic Review of Mixed Martial Arts: An Overview of Performance of Importance Factors with over 20,000 Athletes. Sports 2022, 10, 80. [Google Scholar] [CrossRef]
- Del Coso, J.; Hiam, D.; Houweling, P.J.; Pérez, L.; Eynon, N.; Lucia, A. More than a ‘speed gene’: ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur. J. Appl. Physiol. 2018, 119, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Yusof, H.A.; Muhamed, A.M.C. Angiotensin-converting enzyme (ACE) insertion/deletion gene polymorphism across ethnicity: A narrative review of performance gene. Sport Sci. Health 2021, 17, 57–77. [Google Scholar] [CrossRef]
- Kikuchi, N.; Min, S.; Ueda, D.; Igawa, S.; Nakazato, K. Higher frequency of the ACTN3 R allele + ACE DD genotype in Japanese elite wrestlers. J. Strength Cond. Res. 2012, 26, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Ueda, D.; Min, S.; Nakazato, K.; Igawa, S. The ACTN3 XX genotype’s underrepresentation in Japanese elite wrestlers. Int. J. Sports Physiol. Perform. 2013, 8, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ipekoğlu, G.; Bülbül, A.; Çakir, H.İ. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J. Sports Med. Phys. Fit. 2022, 62, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of the ACTN3 R577X (rs1815739) polymor-phism with elite power sports: A meta-analysis. PLoS ONE 2019, 14, e0217390. [Google Scholar] [CrossRef]
- Ribas, M.R.; Netto, Z.C.O.; De Macedo Salgueirosa, F.; Fernandes, P.V.; De Matos, O.; Bassan, J.C. Association of ACTN3 R577X and ACE I/D polymorphisms in Brazilians wrestlers. Rev. Bras. De Med. Do Esporte 2017, 23, 469–472. [Google Scholar] [CrossRef]
- Yamamichi, H.; Kasakura, S.; Yamamori, S.; Iwasaki, R.; Jikimoto, T.; Kanagawa, S.; Ohkawa, J.; Kumagai, S.; Koshiba, M. Creatine Kinase Gene Mutation in a Patient with Muscle Creatine Kinase Deficiency. Clin. Chem. 2001, 47, 1967–1973. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Liang, H.; Yu, D.; Hu, S. A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol. Sport 2017, 34, 323–330. [Google Scholar] [CrossRef]
- Voisin, S.; Cięszczyk, P.; Pushkarev, V.P.; Dyatlov, D.A.; Vashlyayev, B.F.; Shumaylov, V.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Skuza, L.; Jastrzębski, Z.; et al. EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. BMC Genom. 2014, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mol. Neurobiol. 2017, 38, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Khoury, S.; Segal, J.P.; Parisien, M.; Noreau, A.; Dion, P.A.; Benavides, R.; Giguère, J.; Denis, R.; Belfer, I.; Di-atchenko, L.; et al. Post-concussion symptoms and chronic pain after mild traumatic brain injury are modulated by multiple locus effect in the BDNF gene through the expression of antisense: A pilot prospective control study. Can. J. Pain 2017, 1, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, H.; Hasegawa, K.; Aruga, D.; Tanaka, M. Potential genetic contributions of the central nervous system to a predisposition to elite athletic traits: State-of-the-Art and Future Perspectives. Genes 2021, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.M.; Rabelo, P.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol. Res. 2017, 50, e6432. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.A.; Hen, R. The serotonergic system and anxiety. Neuromol. Med. 2004, 5, 027–040. [Google Scholar] [CrossRef] [PubMed]
- Young, E.E.; Lariviere, W.R.; Belfer, I. Genetic basis of pain variability: Recent advances. J. Med. Genet. 2011, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Świeboda, P.; Filip, R.; Prystupa, A.; Drozd, M. Assessment of pain: Types, mechanism and treatment. Ann. Agric. Environ. Med. 2013, 1, 2–7. [Google Scholar]
- Lee, H.J.; Kim, S.Y.; Kim, G.S. Fracture, bone mineral density, and the effects of calcitonin receptor gene in postmenopausal Koreans. Osteoporos. Int. 2010, 21, 1351–1360. [Google Scholar] [CrossRef]
- Mitra, S.; Tan, P.Y.; Amini, F. Association ofADRB2rs1042713 with Obesity and Obesity-Related Phenotypes and Its Interaction with Dietary Fat in Modulating Glycaemic Indices in Malaysian Adults. J. Nutr. Metab. 2019, 1, 8718795. [Google Scholar] [CrossRef]
- Kannu, P.; Bateman, J.; Savarirayan, R. Clinical phenotypes associated with type II collagen mutations. J. Paediatr. Child Health 2012, 48, E38–E43. [Google Scholar] [CrossRef] [PubMed]
- McAuley, A.; Hughes, D.; Tsaprouni, L.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic association research in football: A systematic review. Eur. J. Sport Sci. 2020, 21, 714–752. [Google Scholar] [CrossRef] [PubMed]
- Konopka, M.J.; Sperlich, B.; Rietjens, G.; Zeegers, M.P. Genetics and athletic performance: A systematic SWOT analysis of non-systematic reviews. Front. Genet. 2023, 14, 1232987. [Google Scholar] [CrossRef] [PubMed]
- Swan, M. Applied Genomics: Personalized Interpretation of Athletic Performance Genetic Association Data for Sports Performance Capability and Injury Reduction. J. Biosci. Med. 2012, 2. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Semenova, E.; Larin, A.K.; Yusupov, R.A.; Generozov, E.V.; Ahmetov, I.I. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes 2022, 13, 1710. [Google Scholar] [CrossRef] [PubMed]
- Guth, L.M.; Roth, S.M. Genetic influence on athletic performance. Curr. Opin. Pediatr. 2013, 25, 653–658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, K.; Morris, M.; Akam, L.; Mastana, S. The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants. Int. J. Environ. Res. Public Health 2024, 21, 1019. https://doi.org/10.3390/ijerph21081019
Anastasiou K, Morris M, Akam L, Mastana S. The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants. International Journal of Environmental Research and Public Health. 2024; 21(8):1019. https://doi.org/10.3390/ijerph21081019
Chicago/Turabian StyleAnastasiou, Konstantinos, Mhairi Morris, Liz Akam, and Sarabjit Mastana. 2024. "The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants" International Journal of Environmental Research and Public Health 21, no. 8: 1019. https://doi.org/10.3390/ijerph21081019
APA StyleAnastasiou, K., Morris, M., Akam, L., & Mastana, S. (2024). The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants. International Journal of Environmental Research and Public Health, 21(8), 1019. https://doi.org/10.3390/ijerph21081019