The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Demographic and Housing Analysis in the Study Area
2.3. Population Perspective
2.3.1. Evaluation Instrument
- Sociodemographic characteristics: included variables such as sex, age, household size, presence of more vulnerable individuals (under 18 and older than 60), and residence time in the area.
- Perception of the residential environment: evaluated factors influencing settlement decisions, perceived comfort levels, awareness of environmental and health risks, and reported symptoms or health conditions associated with proximity to the mining waste.
- Expectations from public administration and commitment: Identified priority actions from the resident’s perspective and highlighted infrastructure and service deficiencies. In addition, it analyzed the resident involvement level in activities related to environmental conservation and local improvement.
2.3.2. Sample Size
2.3.3. Data Processing and Analysis
2.4. Metals in Water
2.4.1. Sampling
2.4.2. Sample Preparation and Analysis
2.5. Data Analysis and Modeling
3. Results
3.1. Sociodemographic Characteristic
3.2. Perception of the Residential Environment
3.3. Expectations from Public Administration and Commitment
3.4. Metals in Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNDH | National Human Rights Commission |
PDU | Urban Development Plan of the Municipality of Chihuahua 2040 |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometer |
EU | European Union |
IDW | Inverse Distance Weighted |
MPL | Maximum Permissible Level |
References
- Aparicio, M. Los riesgos de la contaminación minera y su impacto en los niños. Tinkazos 2009, 12, 83–101. [Google Scholar]
- Menéndez, J.; Muñoz, S. Contaminación del agua y suelo por los relaves mineros. Paid. XXI 2021, 11, 141–154. [Google Scholar] [CrossRef]
- Rivera, J.; Barrientos, T.; Oropeza, C. Síntesis Sobre Políticas de Salud. Propuestas Basadas en Evidencia; Instituto Nacional de Salud: Cuernavaca, Mexico, 2021. [Google Scholar]
- SEMARNAT. Ex Fundidora, Planta Ávalos Chihuahua, Chihuahua. Secretaría de Medio Ambiente y Recursos Naturales. Available online: https://www.gob.mx/semarnat/acciones-y-programas/ex-fundidora-planta-avalos-chihuahua-chihuahua (accessed on 3 November 2024).
- IMPLAN. Estructura urbana del PDU, Séptima Actualización. Instituto de Planeación Integral del Municipio de Chihuahua. Available online: https://implanchihuahua.org/IMPLAN-Datos/5.6.EstrategiaParaLaAdmonDelSuelo/5.1.EstrategiasPrincipales/5.1.4%20Estructura%20urbana/5.1.4.%20Estructura%20Urbana_13072023.pdf (accessed on 30 October 2024).
- CNDH. Recomendación No. 91/2019 sobre el caso de violaciones a los Derechos Humanos al Medio Ambiente sano, salud, Vivienda e interés Superior de la niñez, por la Contaminación del Pasivo Ambiental “Ávalos” y la Construcción del Fraccionamiento Rinconada Los Nogales, en Chihuahua, Chihuahua. Comisión Nacional de los Derechos Humanos. Available online: https://www.cndh.org.mx/sites/default/files/documentos/2019-11/Rec_2019_091.pdf (accessed on 15 March 2024).
- Ayuntamiento de Chihuahua. Autorización para Pesarrollar Fraccionamiento Habitacional Rinconada Los Nogales. Available online: https://www.municipiochihuahua.gob.mx/Downloads/Recomendacion_91_2019/acuerdo%20de%20ayuntamiento%20Rinconada%20Los%20Nogales%20III.pdf (accessed on 29 October 2024).
- Ornelas Hicks, M.; Sanin Aguirre, L.H.; Díaz-Barriga, F.; Reza López, S.A.; Romieu, I. Evaluación de riesgo de intoxicación por plomo en la zona urbana aledaña a una fundidora en Chihuahua, México. Tecnociencia Chihuah. 2007, 1, 26–35. [Google Scholar] [CrossRef]
- Sosa, M.; Reyes, B.; Moreno, M.; Mirando, S.; Alcalá, J.; Quintana, C.; Puga, S. Evaluación de Impacto Ambiental en Suelo contaminado con Pb y Cd provocado por una empresa minera en la ciudad de Chihuahua. Rev. Latinoam. Recur. Nat. 2008, 4, 155–161. [Google Scholar]
- Valles Aragón, M.C.; Alarcón Herrera, M.T. Risk analysis of a residential area close to the tailing dams of an ex-foundry. Environ. Prog. Sustain. Energy 2013, 32, 1150–1154. [Google Scholar] [CrossRef]
- Espejel-Garcia, D.; Espejel-Garcia, V.V.; Villalobos-Aragon, A.; Lopez-Terrazas, A.; Madrigal-Vazquez, F.A. Smelter Slags: Chemical Characterization and Leaching Behavior of Slags Piled on an Old Smelter in Chihuahua City, Mexico. AGU Fall Meet. 2018, 2018, GH33C-1269. [Google Scholar]
- Domínguez Domínguez, L.A.; Hernández León, R.C.; Gómez González, J. Suelo contaminado con plomo en la Ex Fundidora de Ávalos, Chihuahua. Universidad Abierta ya Distancia de México División de Ciencias de la Salud, Biológicas y Ambientales Ingeniería en Tecnología Ambiental Proyecto Terminal. Available online: https://www.researchgate.net/profile/Luis-Dominguez-22/publication/352434505_Suelo_contaminado_con_plomo_en_la_Ex_Fundidora_de_Avalos_Chihuahua/links/60c97b15a6fdcc0c5c8678db/Suelo-contaminado-con-plomo-en-la-Ex-Fundidora-de-Avalos-Chihuahua.pdf (accessed on 16 April 2025).
- Pérez Olmos, C.D.; Guzmán Bañuelos, S.I.; Valles Aragón, M.C. Perspectiva de la población residente aledaña a jales mineros. In Sostenibilidad y Desarrollo Regional de Cara a los Desafíos Socioambientales; Sarmiento Franco, J.F., Ed.; Universidad Nacional Autónoma de México, Instituto de Investigaciones Económicas y Asociación Mexicana de Ciencias para el Desarrollo Regional: Ciudad de México, Mexico, 2024; pp. 34–48. ISBN UNAM 978-607-30-9747-5. AMECIDER 978-607-8632-44-2. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Inventario Nacional de Viviendas 2020. Available online: https://www.inegi.org.mx/app/mapa/espacioydatos/?app=inv (accessed on 10 November 2024).
- SSA. NOM-127-SSA1-2021. Agua Para uso y Consumo Humano. Límites Permisibles de la Calidad del Agua. Secretaría de Salud. Diario Oficial de la Federación. México. Available online: https://www.dof.gob.mx/nota_detalle_popup.php?codigo=5650705 (accessed on 15 January 2025).
- EPA. National Primary Drinking Water Regulations. United States Environmental Protection Agency. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#one (accessed on 15 January 2025).
- EU. On the Quality of Water Intended for Human Consumption. Directive (EU) 2020/2184 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=legissum:4499769 (accessed on 15 January 2025).
- Madero Gómez, S.M.; Calderón Leyva, V.; Vélez Torres, F. Preferencias de las Personas a las Prestaciones y Beneficios en su lugar de trabajo: Caso de una Empresa Maquiladora en la Frontera Noroeste México-Estados Unidos. Nova Sci. 2015, 7, 529–552. [Google Scholar] [CrossRef]
- Navarro González, M.I.J. Niveles de saneamiento para suelo con pasivos ambientales. Estimación de factores de exposición para México. Rev. AIDIS Ing. Y Cienc. Ambient. Investig. Desarro. Y Práctica 2006, 1, 1. [Google Scholar]
- Czaika, M.; Reinprecht, C. Why do people stay put in environmentally stressful regions? Cognitive bias and heuristics in migration decision-making. Reg. Environ. Change 2022, 22, 84. [Google Scholar] [CrossRef]
- Ren, M.; Rodríguez-Pineda, J.A.; Goodell, P. Mineral de arsénico en toba volcánica, una fuente de anomalía de arsénico en aguas subterráneas: Ciudad de Chihuahua, México. Geociencias 2022, 12, 69. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Reyes-Gómez, V.M.; Alarcón-Herrera, M.T.; López, D.N. Exploratory analysis of sediment geochemistry to determine the source and dispersion of Ba, Fe, Mn, Pb and Cu and in Chihuahua, Northern Mexico. J. Geogr. Geol. 2012, 4, 26. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Mokhtar, M.B. Assessing cadmium and chromium concentrations in drinking water to predict health risk in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 2966. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Almomani, F.; Dragoi, E.N. Health risk assessment induced by trace toxic metals in tap drinking water: Condorcet principle development. Chemosphere 2022, 286, 131821. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Espino-Valdés, M.S.; Alarcón-Herrera, M.T.; Pinales-Munguía, A.; Silva-Hidalgo, H. Arsénico y flúor en agua subterránea de Chihuahua: Origen, enriquecimiento y tratamientos posibles. Tecnociencia Chihuah. 2021, 15, 95–108. [Google Scholar] [CrossRef]
- Ponce-González, F.; Villalobos-Aragón, A.; Espejel-García, V.V.; Espejel-García, D. Geochemical Characterization of Soils in the Playa Lake Environment of Laguna de Encinillas, Chihuahua, Mexico. Open J. Geol. 2024, 14, 900–918. [Google Scholar] [CrossRef]
- Atienzo, E.; Campero, L.; Lozada, A.L.; Herrera, C. Aspiraciones educativas y familiares como condicionantes en la prevención de embarazos tempranos en México. Salud Pública México 2014, 56, 286–294. [Google Scholar] [CrossRef]
- De Pablos, J.; Sánchez, L. Estilos de vida y revitalización del espacio urbano. Papers. Rev. Sociol. 2003, 71, 11–31. [Google Scholar] [CrossRef]
- Auyero, J.; Swistun, D. Expuestos y confundidos. Un relato etnográfico sobre sufrimiento ambiental. Íconos—Rev. Cienc. Soc. 2007, 28, 137–152. [Google Scholar] [CrossRef]
- Norgaard, K.M. “We don’t really want to know”: Environmental justice and socially organized denial of global warming in Norway. Organ. Environ. 2006, 19, 347–370. [Google Scholar] [CrossRef]
- Brulle, R.J. Environmental justice: Human health and environmental inequalities. Annu. Rev. Public Health 2006, 27, 103–124. [Google Scholar] [CrossRef]
- Ursino, S.V. Paisaje Contaminado ¿visible o invisible? Representaciones Sociales de la Contaminación Ambiental y Prácticas Espaciales en los Barrios más Afectados de Dock Sud. Master’s Thesis, “Paisaje, Medioambiente y Ciudad”, Universidad Nacional de La Plata—Facultad de Arquitectura y Urbanismo, La Plata, Argentina, 2012. [Google Scholar]
- Hanna-Attisha, M.; LaChance, J.; Sadler, R.C.; Champney Schnepp, A. Elevated blood lead levels in children associated with the Flint drinking water crisis: A spatial analysis of risk and public health response. Am. J. Public Health 2016, 106, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Bickerstaff, K.; Walker, G. The place(s) of matter: Matter out of place—Public understandings of air pollution. Prog. Hum. Geogr. 2003, 27, 45–67. [Google Scholar] [CrossRef]
- ATSDR. Resúmenes de Salud Pública—Arsénico. Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/es/phs/es_phs2.html (accessed on 12 January 2025).
- Torno, S. Emisiones de Material Particulado en Almacenamiento de Minerales a la Intemperie. Ph.D. Thesis, Civil Engineering and the Environment, University of Oviedo, Oviedo, España, 2008. Available online: https://digibuo.uniovi.es/dspace/handle/10651/15060 (accessed on 24 January 2025).
- Betancourt, O.; Narváez, A.; Roulet, M. Small-scale gold mining in the Puyango River Basin, Southern Ecuador: A study of environmental impacts and human exposures. EcoHealth. 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Wyatt, L.; Ortiz, E.J.; Feingold, B.; Berky, A.; Diringer, S.; Morales, A.M.; Jurado, E.R.; Hsu-Kim, H.; Pan, W. Spatial, temporal, and dietary variables associated with elevated mercury exposure in Peruvian riverine communities upstream and downstream of artisanal and small-scale gold mining. Int. J. Environ. Res. Public Health 2017, 14, 1582. [Google Scholar] [CrossRef]
- Hombrados, M.I.; López, T. Dimensiones del sentido de comunidad que predicen la calidad de vida residencial en barrios con diferentes posiciones socioeconómicas. Psychosoc. Interv. 2014, 23, 159–167. [Google Scholar] [CrossRef]
- Observatorio de Conflictos Mineros de América Latina. Pasivos Ambientales Mineros, Barriendo Bajo la Alfombra. Consuelo Infante. Available online: https://www.ocmal.org/wp-content/uploads/2017/03/pasivos_22.pdf (accessed on 2 February 2025).
- ASGMI. Manual para el Inventario de Minas Abandonadas o Paralizadas. Grupo de Expertos en Pasivos Ambientales Mineros. Available online: https://asgmi.org/wp-content/uploads/2020/06/Manual-Inventario-PAM-y-Anexos.pdf?utm (accessed on 2 February 2025).
- Brown, P.; Morello-Frosch, R.; Zavestoski, S. Contested Illnesses: Citizens, Science, and Health Social Movements; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Díaz, F. Los residuos peligrosos en México. Evaluación del riesgo para la salud pública de México. Salud Pública México 1996, 38, 280–291. Available online: https://www.redalyc.org/pdf/106/10638409.pdf (accessed on 2 February 2025).
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The risk perception paradox—Implications for governance and communication of natural hazards. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef]
- Palma-Lara, I.; Martínez-Castillo, M.; Quintana-Pérez, J.C.; Arellano-Mendoza, M.G.; Tamay-Cach, F.; Valenzuela-Limón, O.L.; García-Montalvo, E.A.; Hernández-Zavala, A. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol. 2020, 110, 104539. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef]
- Rahman, I.; Wahab, M.A.; Akter, M.; Mahanta, T.R. Iron in Drinking Water and its Impact on Human Health–A Study in Selected Units of Jalalabad Cantonment. Bangladesh Armed Forces Med. J. 2023, 56, 58–64. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chartrand, M.S.; Aaseth, J. Manganese exposure and neurotoxic effects in children. Environ. Res. 2017, 155, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Blaszczyk, U. The impact of nickel on human health. J. Elem. 2008, 13, 685–693. [Google Scholar]
- González-Horta, C.; Ballinas-Casarrubias, L.; Sánchez-Ramírez, B.; Ishida, M.C.; Barrera-Hernández, A.; Gutiérrez-Torres, D.; Zacarias, O.L.; Saunders, R.J.; Drobná, Z.; Méndez, M.A.; et al. Una exposición simultánea al arsénico y al fluoruro del agua potable en Chihuahua, México. Int. J. Environ. Res. Public Health 2015, 12, 4587–4601. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2017, 391, 462–512. [Google Scholar] [CrossRef]
- Schell, L.M.; Gallo, M.V.; Denham, M. Environmental influences on human growth and development: Historical review and case study of contemporary influences. Ann. Hum. Biol. 2009, 36, 459–477. [Google Scholar] [CrossRef]
- Lander, L.; Harnly, M.E.; Curtis, K.; Goldman, L.R. Environmental health disparities: A framework integrating psychosocial and environmental concepts to explore health risk. Int. J. Environ. Res. Public Health 2021, 18, 1234. [Google Scholar] [CrossRef]
- Ozano, K.; Roby, A.; MacDonald, A.; Upton, K.; Hepworth, N.; Gorman, C.; Matthews, J.H.; Dominique, K.; Trabacchi, C.; Chijiutomi, C.; et al. Groundwater: Making the Invisible Visible. FCDO Briefing Pack on Water Governance, Finance and Climate Change, K4D Briefing Note. Institute of Development Studies, Brighton, UK, 2022. Available online: https://nora.nerc.ac.uk/id/eprint/532312/1/K4D_WaterBriefingPack_FINAL_3.pdf (accessed on 16 April 2025).
Total number of housing units | 5773 |
Total number of private housing units | 5627 |
Occupied private housing units | 4634 |
Unoccupied private housing units | 853 |
Total population | 14,187 |
Female population | 7198 |
Male population | 6868 |
Population aged 0 to 14 years | 2935 |
Population aged 15 to 29 years | 3238 |
Population aged 30 to 59 years | 5533 |
Population aged 60 years and older | 2190 |
Population with disabilities | 513 |
Metal | Mexico NOM-127-SSA1-2021 (mg/L) | United States Safe Drinking Water Act (EPA) (mg/L) | Directive (EU) 2020/2184 of the European Parliament and of the Council 2020/2184 (mg/L) | Mean Concentration (mg/L) n = 68 | Standard Deviation |
---|---|---|---|---|---|
Arsenic | 0.010 | 0.010 | 0.010 | 0.072 | 0.093 |
Cadmium | 0.003 | 0.005 | 0.005 | 0.004 | 0.030 |
Copper | 2.000 | 1.300 | 2.000 | 1.356 | 0.705 |
Chromium | 0.050 | 0.100 | 0.025 | 2.167 | 0.820 |
Iron | 0.300 | Not regulated | 0.200 | 7.102 | 13.236 |
Manganese | 0.150 | Not regulated | 0.050 | 0.050 | 0.046 |
Nickel | 0.070 | Not regulated | 0.020 | 0.078 | 0.126 |
Lead | 0.010 | 0.010 | 0.005 | 0.001 | 0.006 |
Selenium | 0.040 | 0.050 | 0.020 | 0.005 | 0.026 |
Beryllium | Not regulated | 0.004 | Not regulated | 0.001 | 0.004 |
Thallium | Not regulated | 0.002 | Not regulated | 0.000 | 0.000 |
Cobalt | Not regulated | Not regulated | Not regulated | 0.000 | 0.000 |
Titanium | Not regulated | Not regulated | Not regulated | 0.001 | 0.004 |
Zinc | Not regulated | Not regulated | Not regulated | 0.003 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Quintero, G.; Lira-Hernández, D.; Pérez-Olmos, C.D.; Valles-Aragón, M.C.; Cortes-Palacios, L.; García-González, C.G.; Iracheta-Lara, I.Z.; Nevárez-Rodríguez, M.C.; Aquino-de los Ríos, G.S. The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry. Int. J. Environ. Res. Public Health 2025, 22, 692. https://doi.org/10.3390/ijerph22050692
Vázquez-Quintero G, Lira-Hernández D, Pérez-Olmos CD, Valles-Aragón MC, Cortes-Palacios L, García-González CG, Iracheta-Lara IZ, Nevárez-Rodríguez MC, Aquino-de los Ríos GS. The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry. International Journal of Environmental Research and Public Health. 2025; 22(5):692. https://doi.org/10.3390/ijerph22050692
Chicago/Turabian StyleVázquez-Quintero, Griselda, Daniel Lira-Hernández, César Damián Pérez-Olmos, María Cecilia Valles-Aragón, Leonor Cortes-Palacios, César Guillermo García-González, Ireyli Zuluamy Iracheta-Lara, Myrna Concepción Nevárez-Rodríguez, and Gilberto Sandino Aquino-de los Ríos. 2025. "The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry" International Journal of Environmental Research and Public Health 22, no. 5: 692. https://doi.org/10.3390/ijerph22050692
APA StyleVázquez-Quintero, G., Lira-Hernández, D., Pérez-Olmos, C. D., Valles-Aragón, M. C., Cortes-Palacios, L., García-González, C. G., Iracheta-Lara, I. Z., Nevárez-Rodríguez, M. C., & Aquino-de los Ríos, G. S. (2025). The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry. International Journal of Environmental Research and Public Health, 22(5), 692. https://doi.org/10.3390/ijerph22050692