Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analysis
3. Results
4. Discussion
Comparison with Literature
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.R.; Luthra, R.; Routbort, M.J.; Patel, K.P.; Medeiros, L.J. Implementation of next generation sequencing in clinical molecular diagnostic laboratories: Advantages, challenges and potential. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Parikh, V.N.; Ashley, E.A. Next Generation Sequencing in Cardiovascular Disease: Present Clinical Applications and the Horizon of Precision Medicine. Circulation 2017, 135, 406–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rexach, J.; Lee, H.; A Martinez-Agosto, J.; Nemeth, A.; Fogel, B.L. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 2019, 18, 492–503. [Google Scholar] [CrossRef]
- Nigro, V.; Savarese, M. Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. Curr. Opin. Neurol. 2016, 29, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. J. Am. Med. Assoc. 2019, 321, 893–894. [Google Scholar] [CrossRef] [Green Version]
- Chin, L.; Andersen, J.; Futreal, P.A. Cancer genomics: From discovery science to personalized medicine. Nat. Med. 2011, 17, 297–303. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Lopez-Chavez, A.; Wang, Y.; Giaccone, G. From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann. Oncol. 2012, 24, 577–585. [Google Scholar] [CrossRef]
- Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2022. Canadian Cancer Society. 2022. Available online: https://cancer.ca/en/research/cancer-statistics (accessed on 20 June 2022).
- Cainap, C.; Balacescu, O.; Cainap, S.S.; Pop, L.-A. Next Generation Sequencing Technology in Lung Cancer Diagnosis. Biology 2021, 10, 864. [Google Scholar] [CrossRef]
- Johnson, D.B.; Dahlman, K.H.; Knol, J.; Gilbert, J.; Puzanov, I.; Means-Powell, J.; Balko, J.M.; Lovly, C.M.; Murphy, B.A.; Goff, L.W.; et al. Enabling a Genetically Informed Approach to Cancer Medicine: A Retrospective Evaluation of the Impact of Comprehensive Tumor Profiling Using a Targeted Next-Generation Sequencing Panel. Oncologist 2014, 19, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Schwaederle, M.; Zhao, M.; Lee, J.J.; Lazar, V.; Leyland-Jones, B.; Schilsky, R.L.; Mendelsohn, J.; Kurzrock, R. Association of Biomarker-Based Treatment Strategies with Response Rates and Progression-Free Survival in Refractory Malignant Neoplasms: A Meta-analysis. JAMA Oncol. 2016, 2, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.; Regier, D.A.; Meissner, B.; Cromwell, I.; Ben-Neriah, S.; Chavez, E.; Hung, S.; Steidl, C.; Scott, D.W.; Marra, M.A.; et al. A time-and-motion approach to micro-costing of high-throughput genomic assays. Curr. Oncol. 2016, 23, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, C.J.; Shirts, B.H.; Bennette, C.S.; Guzauskas, G.; Amendola, L.M.; Horike-Pyne, M.; Hisama, F.M.; Pritchard, C.C.; Grady, W.M.; Burke, W.; et al. Next-Generation Sequencing Panels for the Diagnosis of Colorectal Cancer and Polyposis Syndromes: A Cost-Effectiveness Analysis. J. Clin. Oncol. 2015, 33, 2084–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Bare, L.A.; Bender, R.A.; Sninsky, J.J.; Wilson, L.S.; Devlin, J.J.; Waldman, F.M. Cost Effectiveness of Sequencing 34 Cancer-Associated Genes as an Aid for Treatment Selection in Patients with Metastatic Melanoma. Mol. Diagn. Ther. 2015, 19, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, P.; Touzani, R.; Perrier, L.; Rouleau, E.; Kossi, D.S.; Zhaomin, Z.; Charrier, N.; Goardon, N.; Preudhomme, C.; Durand-Zaleski, I.; et al. Cost of cancer diagnosis using next-generation se-quencing targeted gene panels in routine practice: A nationwide French study. Eur. J. Hum. Genet. 2018, 26, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Fahr, P.; Buchanan, J.; Wordsworth, S. A Review of Health Economic Studies Comparing Traditional and Massively Parallel Sequencing Diagnostic Pathways for Suspected Genetic Disorders. PharmacoEconomics 2019, 38, 143–158. [Google Scholar] [CrossRef]
- Frick, K.D. Microcosting Quantity Data Collection Methods. Med. Care 2009, 47 (Suppl. 1), S76–S81. [Google Scholar] [CrossRef] [Green Version]
- Potter, S.; Davies, C.; Davies, G.; Rice, C.; Hollingworth, W. The use of micro-costing in economic analyses of surgical interventions: A systematic review. Health Econ. Rev. 2020, 10, 3–11. [Google Scholar] [CrossRef]
- Lopetegui, M.; Yen, P.-Y.; Lai, A.; Jeffries, J.; Embi, P.; Payne, P. Time motion studies in healthcare: What are we talking about? J. Biomed. Inform. 2014, 49, 292–299. [Google Scholar] [CrossRef]
- Zheng, K.; Guo, M.H.; A Hanauer, D. Using the time and motion method to study clinical work processes and workflow: Methodological inconsistencies and a call for standardized research. J. Am. Med. Inform. Assoc. 2011, 18, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Canadian Agency for Drugs and Technologies in Health. Guidelines for the Economic Evaluation of Health Technologies Canada, 3rd ed.; CADTH: Ottawa, ON, Canada, 2017. [Google Scholar]
- Sabatini, L.M.; Mathews, C.; Ptak, D.; Doshi, S.; Tynan, K.; Hegde, M.R.; Burke, T.L.; Bossler, A.D. Genomic Sequencing Procedure Microcosting Analysis and Health Economic Cost-Impact Analysis: A Report of the Association for Molecular Pathology. J. Mol. Diagn. 2016, 18, 319–328. [Google Scholar] [CrossRef] [Green Version]
- A Van Amerongen, R.; Retèl, V.P.; Coupe, V.; Nederlof, P.M.; Vogel, M.J.; Van Harten, W.H. Next-generation sequencing in NSCLC and melanoma patients: A cost and budget impact analysis. Ecancermedicalscience 2016, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.M.; Sheffield, B.S.; Yip, S.; Lakzadeh, P.; Qian, C.; Nam, J. Costs of in-house genomic profiling and implications for economic evaluation: A case example of non-small cell lung cancer (NSCLC). J. Med. Econ. 2020, 23, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, K.; Buchanan, J.; Fermont, J.M.; Dreau, H.; Tilley, M.W.; Taylor, J.M.; Antoniou, P.; Knight, S.J.L.; Camps, C.; Pentony, M.M.; et al. The complete costs of genome sequencing: A microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. 2019, 22, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Library Preparation (CAD) | Sequencing (CAD) | Bio-Informatic Analysis (CAD) | Administrative Support and Training (CAD) | Total (CAD) | |
---|---|---|---|---|---|
DNA | |||||
Trusight Tumor 170 Kit | 743.11 | 496.25 | 10.07 | 38.43 | 1287.87 |
Targeted DNA Panels | 244.38 | 184.80 | 3.75 | 38.43 | 471.36 |
Oncomine Focus | 452.08 | 504.75 | 10.07 | 38.43 | 1005.33 |
SeqCap EZ/KAPA Hyper Prep Plus Custom | 756.24 | 393.17 | 40.09 | 38.43 | 1227.93 |
RNA | |||||
Trusight Tumor 170 Kit | 701.19 | 496.25 | 10.07 | 38.43 | 1245.95 |
QIAseq Targeted RNAscan Custom Panels | 196.97 | 369.60 | 3.75 | 38.43 | 608.74 |
Oncomine Focus | 448.50 | 504.75 | 10.07 | 38.43 | 1001.75 |
Testing Step | Subcomponent | Trusight Tumor 170 Kit (CAD) | QIAseq Targeted DNA and RNAscan Custom Panels (CAD) | Oncomine Focus (CAD) | SeqCap EZ/KAPA Hyper Prep Plus Custom (CAD) |
---|---|---|---|---|---|
Library Preparation | Equipment | 23,596.84 | 23,596.84 | 23,596.84 | 23,596.84 |
Bioinformatic Analysis | Software for bioinformatic analysis and fixed costs of personnel time to set up and maintain an automated analysis pipeline * | 4836.36 | 1672.71 | 4836.36 | 7345.43 |
Data storage | 200 | 200 | 200 | 200 | |
Annual Fixed Costs | 28,633.20 | 25,469.56 | 28,633.20 | 31,142.27 |
Testing Step | Subcomponent | Trusight Tumor 170 Kit (CAD) | QIAseq Targeted DNA and RNAscan Custom Panels (CAD) | Oncomine Focus (CAD) | SeqCap EZ/KAPA Hyper Prep Plus Custom (CAD) |
---|---|---|---|---|---|
DNA | |||||
Library Preparation | Supplies and reagents | 48.57 | 48.57 | 48.57 | 48.57 |
Library preparation kit | 564.45 | 126.37 | 327.54 | 625.22 | |
Personnel | 82.91 | 22.24 | 28.77 | 35.26 | |
Sequencing * | 496.25 | 184.80 | 504.75 | 393.17 | |
Bio-informatic Analysis | Personnel | 0.00 | 0.00 | 0.00 | 0.00 |
Administrative Support | Administrative support | 36.16 | 36.16 | 36.16 | 36.16 |
Training | 2.27 | 2.27 | 2.27 | 2.27 | |
Total Variable Cost, Per Sample | 1230.60 | 420.42 | 948.06 | 1165.64 | |
RNA | |||||
Library Preparation | Supplies and reagents | 48.57 | 48.57 | 48.57 | NA |
Library preparation kit | 564.45 | 73.79 | 323.96 | NA | |
Personnel | 40.98 | 27.41 | 28.77 | NA | |
Sequencing * | 496.25 | 369.60 | 504.75 | NA | |
Bio-informatic Analysis | Personnel | 0.00 | 0.00 | 0.00 | NA |
Administrative Support | Administrative support | 36.16 | 36.16 | 36.16 | NA |
Training | 2.27 | 2.27 | 2.27 | NA | |
Total Variable Cost, Per Sample | 1188.68 | 557.80 | 944.48 | NA |
Parameter | Trusight Tumor 170 Kit (CAD) | QIAseq Targeted DNA and RNAscan Custom Panels (CAD) | Oncomine Focus (CAD) | SeqCap EZ/KAPA Hyper Prep Plus Custom (CAD) | ||||
---|---|---|---|---|---|---|---|---|
LB * | UB * | LB * | UB * | LB * | UB * | LB * | UB * | |
Annual Case Throughput ** LB = 250; UB = 750 | 1362.60 | 1235.01 | 610.20 | 516.67 | 1099.24 | 971.64 | 1328.64 | 1194.35 |
Batch size *** LB = 3; UB = 8 | 1291.79 | 1266.91 | 558.90 | 540.05 | 1007.46 | 1003.54 | 1254.07 | 1227.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Bennett, A.; Campbell, P.A.; Palidwor, G.; Lo, B.; Perkins, T.J.; Nochaiwong, S.; Sekhon, H.S.; Stewart, D.J.; Thavorn, K. Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study. Curr. Oncol. 2022, 29, 5238-5246. https://doi.org/10.3390/curroncol29080416
Kumar S, Bennett A, Campbell PA, Palidwor G, Lo B, Perkins TJ, Nochaiwong S, Sekhon HS, Stewart DJ, Thavorn K. Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study. Current Oncology. 2022; 29(8):5238-5246. https://doi.org/10.3390/curroncol29080416
Chicago/Turabian StyleKumar, Srishti, Alexandria Bennett, Pearl A. Campbell, Gareth Palidwor, Bryan Lo, Theodore J. Perkins, Surapon Nochaiwong, Harmanjatinder S. Sekhon, David J. Stewart, and Kednapa Thavorn. 2022. "Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study" Current Oncology 29, no. 8: 5238-5246. https://doi.org/10.3390/curroncol29080416
APA StyleKumar, S., Bennett, A., Campbell, P. A., Palidwor, G., Lo, B., Perkins, T. J., Nochaiwong, S., Sekhon, H. S., Stewart, D. J., & Thavorn, K. (2022). Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study. Current Oncology, 29(8), 5238-5246. https://doi.org/10.3390/curroncol29080416