Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data Collection and Processing
2.2. Tissue Collection and Library Construction
2.3. Whole-Genome and Transcriptome Sequencing
2.4. HLA and Autoimmune-Associated SNPs
2.5. Statistics
3. Results
3.1. Distribution and Frequency of Immune-Related Adverse Events
3.2. Co-Occurrence of irAEs
3.3. Pre-Existing Autoimmune Conditions Correlate with irAEs
3.4. Impact of Germline Factors on the Frequency and Type of IRAEs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015, 26, 2375–2391. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Zhang, F.; Wang, G.; Xu, Y.; Li, C.; Wang, S.; Guo, Y.; Cai, S.; Wang, Y.; Li, J. Incidence rates of immune-related adverse events and their correlation with response in advanced solid tumours treated with NIVO or NIVO+IPI: A systematic review and meta-analysis. J. Immunother. Cancer 2019, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Khoja, L.; Day, D.; Chen, T.W.-W.; Siu, L.L.; Hansen, A.R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Lee, S.J.; Hodi, F.S.; Rao, U.N.M.; Cohen, G.I.; Hamid, O.; Hutchins, L.F.; Sosman, J.A.; Kluger, H.M.; Eroglu, Z.; et al. Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609. J. Clin. Oncol. 2020, 38, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Lebbé, C.; Meyer, N.; Mortier, L.; Marquez-Rodas, I.; Robert, C.; Rutkowski, P.; Menzies, A.M.; Eigentler, T.; Ascierto, P.A.; Smylie, M.; et al. Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial. J. Clin. Oncol. 2019, 37, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Pender, A.; Titmuss, E.; Pleasance, E.D.; Fan, K.Y.; Pearson, H.; Brown, S.D.; Grisdale, C.J.; Topham, J.T.; Shen, Y.; Bonakdar, M.; et al. Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Menzies, A.M. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, N.; Safa, H.; Abudayyeh, A.; Johnson, D.H.; Trinh, V.A.; Zobniw, C.M.; Lin, H.; Wong, M.K.; Abdelrahim, M.; Gaber, A.O.; et al. Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: An institutional experience and a systematic review of the literature. J. Immunother. Cancer 2019, 7, 106. [Google Scholar] [CrossRef]
- Suijkerbuijk, K.P.M.; van Eijs, M.J.M.; van Wijk, F.; Eggermont, A.M.M. Clinical and translational attributes of immune-related adverse events. Nat. Cancer 2024, 1–15. [Google Scholar] [CrossRef]
- Laskin, J.; Jones, S.; Aparicio, S.; Chia, S.; Ch’Ng, C.; Deyell, R.; Eirew, P.; Fok, A.; Gelmon, K.; Ho, C.; et al. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Mol. Case Stud. 2015, 1, a000570. [Google Scholar] [CrossRef]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat. Rev. Cancer 2019, 19, 454–464. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.T.; Wong, W.S.W.; Swamy, S.; Becq, J.; Murray, L.J.; Cheetham, R.K. Strelka: Accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 2012, 28, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Bashashati, A.; Roth, A.; Oloumi, A.; Tse, K.; Zeng, T.; Haffari, G.; Hirst, M.; Marra, M.A.; Condon, A.; et al. Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data. Bioinformatics 2011, 28, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Szolek, A.; Schubert, B.; Mohr, C.; Sturm, M.; Feldhahn, M.; Kohlbacher, O. OptiType: Precision HLA typing from next-generation sequencing data. Bioinformatics 2014, 30, 3310–3316. [Google Scholar] [CrossRef] [PubMed]
- Chat, V.; Ferguson, R.; Simpson, D.; Kazlow, E.; Lax, R.; Moran, U.; Pavlick, A.; Frederick, D.; Boland, G.; Sullivan, R.; et al. Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunol. Immunother. 2019, 68, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.; Kotha, S.; Zen, Y.; Papa, S.; El Menabawey, T.; Webster, G.; Joshi, D.; Heneghan, M. Immune checkpoint inhibitor-related cholangiopathy: Novel clinicopathological description of a multi-centre cohort. Liver Int. 2022, 43, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res. 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Shin, Y.; Keam, B.; Kim, M.; Im, S.; Lee, S. HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann. Clin. Transl. Neurol. 2020, 7, 2243–2250. [Google Scholar] [CrossRef]
- Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res. 2017, 77, 6795–6811. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Fumet, J.-D.; Chevrier, S.; Derangère, V.; Ledys, F.; Lagrange, A.; Favier, L.; Coudert, B.; Arnould, L.; Truntzer, C.; et al. Exome Analysis Reveals Genomic Markers Associated with Better Efficacy of Nivolumab in Lung Cancer Patients. Clin. Cancer Res. 2019, 25, 957–966. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, Y.; Zhang, M.; Tang, Y.; Wu, D.; Wang, S.; Fang, Y.; Zhang, Y.; Meng, L.; Li, Y.; et al. Association between germ-line HLA and immune-related adverse events. Front. Immunol. 2022, 13, 952099. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Vaidya, R.; Albain, K.S.; LeBlanc, M.; Minasian, L.M.; Gotay, C.C.; Henry, N.L.; Fisch, M.J.; Lee, S.M.; Blanke, C.D.; et al. Sex Differences in Risk of Severe Adverse Events in Patients Receiving Immunotherapy, Targeted Therapy, or Chemotherapy in Cancer Clinical Trials. J. Clin. Oncol. 2022, 40, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Lampaki, S.; Koliou, G.-A.; Koumarianou, A.; Levva, S.; Vagionas, A.; Christopoulou, A.; Laloysis, A.; Psyrri, A.; Binas, I.; et al. Real-world safety and efficacy data of immunotherapy in patients with cancer and autoimmune disease: The experience of the Hellenic Cooperative Oncology Group. Cancer Immunol. Immunother. 2021, 71, 327–337. [Google Scholar] [CrossRef]
- Reveille, J.D.; Hirsch, R.; Dillon, C.F.; Carroll, M.D.; Weisman, M.H. The prevalence of HLA–B27 in the US: Data from the US National Health and Nutrition Examination Survey, 2009. Arthritis Rheum. 2011, 64, 1407–1411. [Google Scholar] [CrossRef]
N (%) | Any irAE (%) | Grade 2 Intervention (%) | Grade 3+ (%) | |||||
---|---|---|---|---|---|---|---|---|
Tumor type | ||||||||
Lung | 28 | (23.9) | 8 | (28.6) | 5 | (17.9) | 1 | (3.6) |
Melanoma (cutaneous) | 15 | (12.8) | 9 | (60) | 5 | (33.3) | 0 | (0) |
Breast | 13 | (11.1) | 7 | (53.8) | 3 | (23.1) | 1 | (7.7) |
Pancreatic | 13 | (11.1) | 8 | (61.5) | 2 | (15.4) | 0 | (0) |
Gynecological | 8 | (6.8) | 4 | (50) | 1 | (12.5) | 1 | (12.5) |
Melanoma (uveal) | 8 | (6.8) | 7 | (87.5) | 3 | (37.5) | 3 | (37.5) |
Head and neck | 7 | (6.0) | 3 | (42.9) | 1 | (14.3) | 0 | (0) |
Colorectal | 6 | (5.1) | 2 | (33.3) | 1 | (16.7) | 0 | (0) |
Sarcoma | 6 | (5.1) | 4 | (66.7) | 1 | (16.7) | 0 | (0) |
Cholangiocarcinoma | 3 | (2.6) | 1 | (33.3) | 1 | (33.3) | 0 | (0) |
Gastric | 3 | (2.6) | 2 | (66.7) | 1 | (33.3) | 0 | (0) |
Kidney | 2 | (1.7) | 2 | (100) | 0 | (0) | 0 | (0) |
Thymoma | 2 | (1.7) | 1 | (50) | 0 | (0) | 0 | (0) |
Adenoid cystic carcinoma | 1 | (0.9) | 0 | (0) | 0 | (0) | 0 | (0) |
Adrenocortical | 1 | (0.9) | 1 | (100) | 1 | (100) | 1 | (100) |
Lymphoma | 1 | (0.9) | 0 | (0) | 0 | (0) | 0 | (0) |
Testicular | 1 | (0.9) | 1 | (100) | 0 | (0) | 0 | (0) |
Age | ||||||||
≥60 years | 56 | (47.9) | 26 | (46.4) | 8 | (14.3) | 2 | (3.6) |
<60 years | 61 | (52.1) | 34 | (55.7) | 17 | (27.9) | 5 | (8.2) |
Sex | ||||||||
Female | 64 | (54.7) | 33 | (51.6) | 15 | (23.4) | 6 | (9.4) |
Male | 53 | (45.3) | 27 | (50.9) | 10 | (18.9) | 1 | (1.9) |
Pre-existing autoimmune condition | ||||||||
Yes | 20 | (17.1) | 14 | (70) | 5 | (25) | 3 | (15) |
No | 97 | (82.9) | 46 | (47.4) | 20 | (20.6) | 4 | (4.1) |
Pre-existing autoimmune condition | ||||||||
Thyroid disease | 12 | (10.3) | 9 | (75) | 3 | (25) | 2 | (16.7) |
Gastrointestinal | 2 | (1.7) | 2 | (100) | 2 | (100) | 0 | (0) |
Musculoskeletal | 2 | (1.7) | 1 | (50) | 1 | (50) | 1 | (50) |
Dermatological | 4 | (3.4) | 3 | (75) | 0 | (0) | 0 | (0) |
Hematological | 1 | (0.9) | 0 | (0) | 0 | (0) | 0 | (0) |
Other | 2 | (1.7) | 1 | (50) | 0 | (0) | 0 | (0) |
ICI inhibitor type | ||||||||
Single-agent PD-1/PD-L1 | 66 | (56.4) | 28 | (42.4) | 10 | (15.2) | 3 | (4.5) |
Combination PD-1/PD-L1 & CTLA-4 | 32 | (27.4) | 21 | (65.6) | 10 | (31.3) | 2 | (6.3) |
Single-agent CTLA-4 | 2 | (1.7) | 2 | (100) | 0 | (0) | 0 | (0) |
Other * | 17 | (14.5) | 9 | (52.9) | 5 | (29.4) | 2 | (11.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titmuss, E.; Yu, I.S.; Pleasance, E.D.; Williamson, L.M.; Mungall, K.; Mungall, A.J.; Renouf, D.J.; Moore, R.; Jones, S.J.M.; Marra, M.A.; et al. Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors. Curr. Oncol. 2024, 31, 1865-1875. https://doi.org/10.3390/curroncol31040140
Titmuss E, Yu IS, Pleasance ED, Williamson LM, Mungall K, Mungall AJ, Renouf DJ, Moore R, Jones SJM, Marra MA, et al. Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors. Current Oncology. 2024; 31(4):1865-1875. https://doi.org/10.3390/curroncol31040140
Chicago/Turabian StyleTitmuss, Emma, Irene S. Yu, Erin D. Pleasance, Laura M. Williamson, Karen Mungall, Andrew J. Mungall, Daniel J. Renouf, Richard Moore, Steven J. M. Jones, Marco A. Marra, and et al. 2024. "Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors" Current Oncology 31, no. 4: 1865-1875. https://doi.org/10.3390/curroncol31040140
APA StyleTitmuss, E., Yu, I. S., Pleasance, E. D., Williamson, L. M., Mungall, K., Mungall, A. J., Renouf, D. J., Moore, R., Jones, S. J. M., Marra, M. A., Laskin, J. J., & Savage, K. J. (2024). Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors. Current Oncology, 31(4), 1865-1875. https://doi.org/10.3390/curroncol31040140