Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Extraction
2.3. Outcomes
2.4. Statistical Analyses
3. Results
3.1. Patients
3.2. Treatment Patterns
3.3. Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canadian Cancer Society. Lung and Bronchus cancer Statistics. Available online: https://cancer.ca/en/cancer-information/cancer-types/lung/statistics (accessed on 26 August 2023).
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Black, R.C.; Khurshid, H. NSCLC: An Update of Driver Mutations, Their Role in Pathogenesis and Clinical Significance. R. I. Med. J. 2015, 98, 25–28. [Google Scholar]
- Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal Growth Factor Receptor Mutations in Lung Cancer. Nat. Rev. Cancer 2007, 7, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, M.; Borgeaud, M.; Addeo, A.; Friedlaender, A. Oncogenic Driver Mutations in Non-Small Cell Lung Cancer: Past, Present and Future. World J. Clin. Oncol. 2021, 12, 217–237. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B.; Blais, N.; Cheema, P.; Couture, C.; Juergens, R.; Kamel-Reid, S.; Tsao, M.S.; Wheatley-Price, P.; Xu, Z.; Ionescu, D.N. Standardizing Biomarker Testing for Canadian Patients with Advanced Lung Cancer. Curr. Oncol. 2018, 25, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Burnett, H.; Emich, H.; Carroll, C.; Stapleton, N.; Mahadevia, P.; Li, T. Epidemiological and Clinical Burden of EGFR Exon 20 Insertion in Advanced Non-Small Cell Lung Cancer: A Systematic Literature Review. PLoS ONE 2021, 16, e0247620. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic Non-Small Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Ellison, G.; Zhu, G.; Moulis, A.; Dearden, S.; Speake, G.; McCormack, R. EGFR Mutation Testing in Lung Cancer: A Review of Available Methods and Their Use for Analysis of Tumour Tissue and Cytology Samples. J. Clin. Pathol. 2013, 66, 79. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.M.; Viteri, S.; Minchom, A.; Bazhenova, L.; Ou, S.; Schaffer, M.; Le Croy, N.; Riley, R.; Mahadevia, P.; Girard, N. FP07.12 Underdiagnosis of EGFR Exon 20 Insertion Mutation Variants: Estimates from NGS-Based Real-World Datasets. J. Thorac. Oncol. 2021, 16 (Suppl. S3), S208–S209. [Google Scholar] [CrossRef]
- Yip, S.; Christofides, A.; Banerji, S.; Downes, M.R.; Izevbaye, I.; Lo, B.; MacMillan, A.; McCuaig, J.; Stockley, T.; Yousef, G.M.; et al. A Canadian Guideline on the Use of Next-Generation Sequencing in Oncology. Curr. Oncol. 2019, 26, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B.; Banerji, S.; Blais, N.; Chu, Q.; Juergens, R.; Leighl, N.B.; Liu, G.; Cheema, P. Canadian Consensus: A New Systemic Treatment Algorithm for Advanced Egfr-Mutated Non-Small-Cell Lung Cancer. Curr. Oncol. 2020, 27, e146–e155. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. Non–Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic Strategies for EGFR-Mutated Non-Small Cell Lung Cancer Patients with Osimertinib Resistance. J. Hematol. Oncol. 2022, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Nieva, J.; Reckamp, K.L.; Potter, D.; Taylor, A.; Sun, P. Retrospective Analysis of Real-World Management of EGFR-Mutated Advanced NSCLC, After First-Line EGFR-TKI Treatment: US Treatment Patterns, Attrition, and Survival Data. Drugs Real World Outcomes 2022, 9, 333–345. [Google Scholar] [CrossRef]
- Remon, J.; Hendriks, L.E.L.; Cardona, A.F.; Besse, B. EGFRExon 20 Insertions in Advanced Non-Small Cell Lung Cancer: A New History Begins. Cancer Treat Rev. 2020, 90, 102105. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xu, X.; Cai, J.; Ning, J.; Wery, J.P.; Li, Q.-X. NSCLC Harboring EGFR Exon-20 Insertions after the Regulatory C-Helix of Kinase Domain Responds Poorly to Known EGFR Inhibitors. Int. J. Cancer 2016, 139, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-Y.; Yu, C.-J.; Shih, J.-Y. Effectiveness of Treatments for Advanced Non–Small-Cell Lung Cancer With Exon 20 Insertion Epidermal Growth Factor Receptor Mutations. Clin. Lung Cancer 2019, 20, e620–e630. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, K.-J.; Cho, B.C.; Liu, B.; Paz-Ares, L.; Cheng, S.; Kitazono, S.; Thiagarajan, M.; Goldman, J.W.; Sabari, J.K.; et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.P.; Law, J.H.; Le, L.W.; Li, J.J.N.; Zahir, S.; Nirmalakumar, S.; Sung, M.; Pettengell, C.; Aviv, S.; Chu, R.; et al. Automating Access to Real-World Evidence. JTO Clin. Res. Rep. 2022, 3, 100340. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Mu, D.; Peng, H.; Li, H.; Wang, Y.; Wang, P.; Wang, Y.; Han, S. Research and Application of Artificial Intelligence Based on Electronic Health Records of Patients With Cancer: Systematic Review. JMIR Med. Inform. 2022, 10, e33799. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.M.; Rumsfeld, J.S.; Payne, P.R.O. Questions for Artificial Intelligence in Health Care. JAMA 2019, 321, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Law, J.H.; Pettengell, C.; Le, L.W.; Aviv, S.; DeMarco, P.; Merritt, D.C.; Lau, S.C.M.; Sacher, A.G.; Leighl, N.B. Generating Real-World Evidence: Using Automated Data Extraction to Replace Manual Chart Review. J. Clin. Oncol. 2019, 37 (Suppl. S15), e18096. [Google Scholar] [CrossRef]
- Petch, J.; Kempainnen, J.; Pettengell, C.; Aviv, S.; Butler, B.; Pond, G.; Saha, A.; Bogach, J.; Allard-Coutu, A.; Sztur, P.; et al. Developing a Data and Analytics Platform to Enable a Breast Cancer Learning Health System at a Regional Cancer Center. JCO Clin. Cancer Inform. 2023, 7, e2200182. [Google Scholar] [CrossRef] [PubMed]
- Vender, R.; Lynde, C. AI-Powered Patient Identification to Optimize Care. Canadian Dermatology Association. 2023. Available online: https://event.fourwaves.com/cda2023/abstracts (accessed on 28 August 2023).
- Petch, J.; Batt, J.; Murray, J.; Mamdani, M. Extracting Clinical Features From Dictated Ambulatory Consult Notes Using a Commercially Available Natural Language Processing Tool: Pilot, Retrospective, Cross-Sectional Validation Study. JMIR Med. Inform. 2019, 7, e12575. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Hueniken, K.; Cheng, S.; Zhan, L.J.; Brown, C.; Mai, V.; Lee, J.; Adewole, O.O.; Herman, J.; Sabouhanian, A.; et al. EP04.01-001 Prevalence And Outcomes of EGFR Exon 20 Insertion Mutation In NSCLC: Princess Margaret Cancer Center Experience. J. Thorac. Oncol. 2022, 17 (Suppl. S9), S245. [Google Scholar] [CrossRef]
- O’Sullivan, D.E.; Jarada, T.N.; Yusuf, A.; Hu, L.; Xun, Y.; Gogna, P.; Brenner, D.R.; Abbie, E.; Rose, J.B.; Eaton, K.; et al. Prevalence, Treatment Patterns, and Outcomes of Individuals with EGFR Positive Metastatic Non-Small Cell Lung Cancer in a Canadian Real-World Setting: A Comparison of Exon 19 Deletion, L858R, and Exon 20 Insertion EGFR Mutation Carriers. Curr. Oncol. 2022, 29, 7198–7208. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Fung, A.S.; Perdrizet, K.A.; Chen, K.; Li, J.J.N.; Le, L.W.; Cabanero, M.; Karsaneh, O.A.A.; Tsao, M.S.; Morganstein, J.; et al. Upfront Next Generation Sequencing in Non-Small Cell Lung Cancer. Curr. Oncol. 2022, 29, 4428–4437. [Google Scholar] [CrossRef] [PubMed]
- Mountzios, G.; Planchard, D.; Metro, G.; Tsiouda, D.; Prelaj, A.; Lampaki, S.; Shalata, W.; Riudavets, M.; Christopoulos, P.; Girard, N.; et al. Molecular Epidemiology and Treatment Patterns of Patients With EGFR Exon 20-Mutant NSCLC in the Precision Oncology Era: The European EXOTIC Registry. JTO Clin. Res. Rep. 2023, 4, 100433. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Leighl, N.; Ohe, Y.; Min Kim, T.; Demirdjian, L.; Bourla, A.; Sultan, A.A.; Mahadevia, P.; Bauml, J.; Sabari, J. 19P—Mortality Among EGFR-Mutated Advanced NSCLC Patients After Frontline Osimertinib Treatment: A Real-World, US Attrition Analysis. J. Thorac. Oncol. 2023, 18, S51–S52. [Google Scholar] [CrossRef]
Common Sensitizing EGFR (N = 136) | EGFR Wild Type b (N = 338) | Exon 20 Insertion (N = 8) | EGFR Test Not Conducted at UHN (N = 131) | Total (N = 613) | |
---|---|---|---|---|---|
Age at diagnosis | |||||
Mean (SD) | 65.1 (11.6) | 67.6 (11.6) | 59.9 (19.3) | 65.3 (10.6) | 66.5 (11.6) |
Median (range) | 65.0 (34.0, 91.0) | 68.0 (27.0, 96.0) | 59.0 (38.0, 88.0) | 66.0 (32.0, 88.0) | 67.0 (27.0, 96.0) |
Sex | |||||
Female | 89 (65.4%) | 146 (43.2%) | 4 (50.0%) | 64 (48.9%) | 303 (49.4%) |
Male | 47 (34.6%) | 192 (56.8%) | 4 (50.0%) | 67 (51.1%) | 310 (50.6%) |
Histology | |||||
Adenocarcinoma | 129 (94.9%) | 276 (81.7%) | 7 (87.5%) | 102 (77.9%) | 514 (83.8%) |
Adenosquamous | 0 (0.0%) | 2 (0.6%) | 1 (12.5%) | 0 (0.0%) | 3 (0.5%) |
Large cell | 2 (1.5%) | 21 (6.2%) | 0 (0.0%) | 16 (12.2%) | 39 (6.4%) |
Sarcomatoid | 0 (0.0%) | 5 (1.5%) | 0 (0.0%) | 6 (4.6%) | 11 (1.8%) |
Non-small cell (unspecified) | 5 (3.7%) | 34 (10.1%) | 0 (0.0%) | 7 (5.3%) | 46 (7.5%) |
Smoking status | |||||
Smoker | 8 (5.9%) | 101 (29.9%) | 0 (0.0%) | 30 (22.9%) | 139 (22.7%) |
Former smoker | 29 (21.3%) | 152 (45.0%) | 2 (25.0%) | 50 (38.2%) | 233 (38.0%) |
Never smoked | 98 (72.1%) | 83 (24.6%) | 6 (75.0%) | 48 (36.6%) | 235 (38.3%) |
Missing | 1 (0.7%) | 2 (0.6%) | 0 (0.0%) | 3 (2.3%) | 6 (1.0%) |
Weight Category | |||||
<80 kg | 105 (77.2%) | 241 (71.3%) | 6 (75.0%) | 98 (74.8%) | 450 (73.4%) |
≥80 kg | 17 (12.5%) | 59 (17.5%) | 0 (0.0%) | 21 (16.0%) | 97 (15.8%) |
Missing | 14 (10.3%) | 38 (11.2%) | 2 (25.0%) | 12 (9.2%) | 66 (10.8%) |
ECOG at diagnosis | |||||
0 | 23 (16.9%) | 34 (10.1%) | 1 (12.5%) | 17 (13.0%) | 75 (12.2%) |
1 | 84 (61.8%) | 180 (53.3%) | 5 (62.5%) | 64 (48.9%) | 333 (54.3%) |
2 | 15 (11.0%) | 59 (17.5%) | 1 (12.5%) | 20 (15.3%) | 95 (15.5%) |
3 | 9 (6.6%) | 28 (8.3%) | 1 (12.5%) | 13 (9.9%) | 51 (8.3%) |
4 | 1 (0.7%) | 5 (1.5%) | 0 (0.0%) | 2 (1.5%) | 8 (1.3%) |
Missing | 4 (2.9%) | 32 (9.5%) | 0 (0.0%) | 15 (11.5%) | 51 (8.3%) |
Organ level metastatic sites at diagnosis a | |||||
Bone | 46 (33.8%) | 119 (35.2%) | 3 (37.5%) | 18 (13.7%) | 186 (30.3%) |
Brain | 21 (15.4%) | 46 (13.6%) | 1 (12.5%) | 16 (12.2%) | 84 (13.7%) |
Lung | 22 (16.2%) | 55 (16.3%) | 0 (0.0%) | 14 (10.7%) | 91 (14.8%) |
Liver | 19 (14.0%) | 42 (12.4%) | 2 (25.0%) | 17 (13.0%) | 80 (13.1%) |
Diagnosed at UHN | |||||
True | 120 (88.2%) | 314 (92.9%) | 5 (62.5%) | 58 (44.3%) | 497 (81.1%) |
False | 16 (11.8%) | 24 (7.1%) | 3 (37.5%) | 73 (55.7%) | 116 (18.9%) |
Follow-up time since diagnosis (months) | |||||
Mean (SD) | 21.4 (14.1) | 13.6 (14.0) | 24.0 (19.8) | 19.0 (16.0) | 16.6 (14.9) |
Median (range) | 19.2 (0.4, 58.9) | 8.0 (0.3, 59.4) | 20.2 (0.4, 61.0) | 14.7 (0.0, 61.8) | 12.3 (0.0, 61.8) |
Common Sensitizing EGFR | EGFR Wild Type | Exon 20 Insertion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 (N = 17) | 2018 (N = 36) | 2019 (N = 28) | 2020 (N = 17) | 2021 (N = 24) | 2022 (N = 2) | 2017 (N = 1) | 2019 (N = 3) | 2021 (N = 5) | 2018 (N = 1) | |
Afatinib | 1 (5.9%) | 6 (16.7%) | 2 (7.1%) | 1 (5.9%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (33.3%) | 4 (80.0%) | 1 (100.0%) |
Erlotinib | 1 (5.9%) | 0 (0.0%) | 0 (0.0%) | 1 (5.9%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Gefitinib | 15 (88.2%) | 30 (83.3%) | 21 (75.0%) | 1 (5.9%) | 0 (0.0%) | 0 (0.0%) | 1 (100.0%) | 2 (66.7%) | 0 (0.0%) | 0 (0.0%) |
Osimertinib | 0 (0.0%) | 0 (0.0%) | 5 (17.9%) | 14 (82.4%) | 24 (100.0%) | 2 (100.0%) | 0 (0.0%) | 0 (0.0%) | 1 (20.0%) | 0 (0.0%) |
Clinical Outcome | 12 Months (95% CI) | 24 Months (95% CI) | Median (95% CI) |
---|---|---|---|
TTD1 | |||
Exon 20 insertion | 14% (2, 88) | 14% (2, 88) | 5 months (3.5, NA) |
Common sensitizing EGFR | 34% (27, 43) | 12% (7, 19) | 9 months (7, 10.3) |
EGFR wild type | 20% (15, 26) | 7% (4, 11) | 4 months (3.3, 4.6) |
TTD2 | |||
Exon 20 insertion | NA | NA | 7.9 months (5.7, NA) |
Common sensitizing EGFR | 34% (25, 46) | 8% (4, 17) | 6.7 months (4.8, 10.7) |
EGFR wild type | 15% (10, 24) | 4% (1, 10) | 2.8 months (1.9, 4.8) |
TTD3 | |||
Exon 20 insertion | NA | NA | 2.8 months (NA, NA) |
Common sensitizing EGFR | 11% (4, 32) | 4% (1, 25) | 2.9 months (1.6, 6.8) |
EGFR wild type | 11% (4, 27) | 3% (0, 19) | 2.1 months (1.3, 5.8) |
OS from diagnosis | |||
Exon 20 insertion | 100% (100, 100) | 80% (52, 100) | NA months (32.1, NA) |
Common sensitizing EGFR | 88% (83, 94) | 63% (54, 73) | 30.1 months (25.2, 38.9) |
EGFR wild type | 59% (53, 65) | 38% (32, 44) | 16.2 months (13.2, 20.5) |
OS from first-line | |||
Exon 20 insertion | 100% (100, 100) | 60% (29, 100) | NA months (18.4, NA) |
Common sensitizing EGFR | 85% (78, 92) | 57% (48, 69) | 26.4 months (23.2, 36.8) |
EGFR wild type | 62% (56, 69) | 38% (32, 46) | 19.3 months (14.2, 22.6) |
OS from second-line | |||
Exon 20 insertion | 75% (43, 100) | NA | 13.1 months (11, NA) |
Common sensitizing EGFR | 56% (45, 69) | 42% (31, 58) | 20.3 months (11, 40.2) |
EGFR wild type | 48% (39, 59) | 26% (17, 38) | 10.6 months (7.6, 15.3) |
OS from end of first-line osimertinib | |||
Common sensitizing EGFR | 35% (17, 75) | - | 5.6 months (3.2, NA) |
OS from end of second-line osimertinib | |||
Common sensitizing EGFR | 20% (9, 44) | - | 3.3 months (2, 10.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moulson, R.; Law, J.; Sacher, A.; Liu, G.; Shepherd, F.A.; Bradbury, P.; Eng, L.; Iczkovitz, S.; Abbie, E.; Elia-Pacitti, J.; et al. Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence. Curr. Oncol. 2024, 31, 1947-1960. https://doi.org/10.3390/curroncol31040146
Moulson R, Law J, Sacher A, Liu G, Shepherd FA, Bradbury P, Eng L, Iczkovitz S, Abbie E, Elia-Pacitti J, et al. Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence. Current Oncology. 2024; 31(4):1947-1960. https://doi.org/10.3390/curroncol31040146
Chicago/Turabian StyleMoulson, Ruth, Jennifer Law, Adrian Sacher, Geoffrey Liu, Frances A. Shepherd, Penelope Bradbury, Lawson Eng, Sandra Iczkovitz, Erica Abbie, Julia Elia-Pacitti, and et al. 2024. "Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence" Current Oncology 31, no. 4: 1947-1960. https://doi.org/10.3390/curroncol31040146
APA StyleMoulson, R., Law, J., Sacher, A., Liu, G., Shepherd, F. A., Bradbury, P., Eng, L., Iczkovitz, S., Abbie, E., Elia-Pacitti, J., Ewara, E. M., Mokriak, V., Weiss, J., Pettengell, C., & Leighl, N. B. (2024). Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence. Current Oncology, 31(4), 1947-1960. https://doi.org/10.3390/curroncol31040146