Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies
Abstract
:1. Introduction
2. Molecular Profiling in the Landscape of Biliary Tract Cancers
2.1. Isocitrate Dehydrogenase (IDH-1)
2.2. Fibroblast Growth Factor Receptor (FGFR)
2.3. Human Epidermal Growth Factor Receptor 2 (HER2)
2.4. Microsatellite Instability and Mismatch Repair Deficient (MSI/dMMR)
2.5. BRAF/MEK Inhibitors
2.6. Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)
2.7. Neurotrophic Tropomyosin Receptor Tyrosine Kinase (NTRK)
2.8. Rearranged during Transfection (RET)
3. Integrating Molecular Profiling into Clinical Practice for BTC Management
4. New Horizons in Neoadjuvant Therapy
5. Limitations in the Use of Molecular Profiling
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Piñero, F.; Mauro, E.; Casciato, P.; Forner, A. From evidence to clinical practice: Bridging the gap of new liver cancer therapies in Latin America. Ann. Hepatol. 2024, 29, 101185. [Google Scholar] [CrossRef] [PubMed]
- Palmer, W.C.; Patel, T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J. Hepatol. 2012, 57, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S. Cholangiocarcinoma. Nat. Rev. Dis. Primers 2021, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Bertuccio, P.; Malvezzi, M.; Carioli, G.; Hashim, D.; Boffetta, P.; El-Serag, H.B.; La Vecchia, C.; Negri, E. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 2019, 71, 104–114. Available online: https://pubmed.ncbi.nlm.nih.gov/30910538/ (accessed on 30 July 2023). [CrossRef]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. Available online: http://www.journal-of-hepatology.eu/article/S0168827822030227/fulltext (accessed on 9 May 2024). [CrossRef] [PubMed]
- Mauro, E.; Ferrer-Fàbrega, J.; Sauri, T.; Soler, A.; Cobo, A.; Burrel, M.; Iserte, G.; Forner, A. New Challenges in the Management of Cholangiocarcinoma: The Role of Liver Transplantation, Locoregional Therapies, and Systemic Therapy. Cancers 2023, 15, 1244. Available online: https://pubmed.ncbi.nlm.nih.gov/36831586/ (accessed on 6 June 2023). [CrossRef]
- European Association for the Study of the Liver. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 69, 182–236. Available online: https://pubmed.ncbi.nlm.nih.gov/37084797/ (accessed on 6 June 2023).
- Izquierdo-Sanchez, L.; Lamarca, A.; La Casta, A.; Buettner, S.; Utpatel, K.; Klümpen, H.-J.; Adeva, J.; Vogel, A.; Lleo, A.; Fabris, L.; et al. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J. Hepatol. 2022, 76, 1109–1121. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0168827821022522 (accessed on 24 April 2024). [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. Available online: https://pubmed.ncbi.nlm.nih.gov/20375404/ (accessed on 9 August 2022). [CrossRef]
- Oh, D.-Y. Updated overall survival from the phase 3 TOPAZ-1 study of durvalumab or placebo plus gemcitabine and cisplatin in patients with advanced biliary tract cancer. (Abstract 56P). Ann. Oncol. 2022, 33 (Suppl. S7), S19–S26. [Google Scholar]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klümpen, H.-J.; Ozaka, M.; Verslype, C.; et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Bridgewater, J.; Edeline, J.; Kelley, R.; Klümpen, H.; Malka, D.; Primrose, J.; Rimassa, L.; Stenzinger, A.; Valle, J.; et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 127–140. Available online: https://pubmed.ncbi.nlm.nih.gov/36372281/ (accessed on 6 June 2023). [CrossRef]
- Roth, G.S.; Verlingue, L.; Sarabi, M.; Blanc, J.-F.; Boleslawski, E.; Boudjema, K.; Bretagne-Bignon, A.-L.; Camus-Duboc, M.; Coriat, R.; Créhange, G.; et al. Biliary tract cancers: French national clinical practice guidelines for diagnosis, treatments and follow-up (TNCD, SNFGE, FFCD, UNICANCER, GERCOR, SFCD, SFED, AFEF, SFRO, SFP, SFR, ACABi, ACHBPT). Eur. J. Cancer 2024, 202, 114000. Available online: http://www.ejcancer.com/article/S0959804924001564/fulltext (accessed on 6 May 2024). [CrossRef] [PubMed]
- Rushbrook, S.M.; Kendall, T.J.; Zen, Y.; Albazaz, R.; Manoharan, P.; Pereira, S.P.; Sturgess, R.; Davidson, B.R.; Malik, H.Z.; Manas, D.; et al. British Society of Gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma. Gut 2023, 73, 16–46. Available online: https://gut.bmj.com/content/early/2023/09/27/gutjnl-2023-330029 (accessed on 2 October 2023). [CrossRef] [PubMed]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.I.; Affo, S.; Goyal, L.; Lamarca, A.; Sapisochin, G.; Yang, J.D.; Gores, G.J. Cholangiocarcinoma—Novel biological insights and therapeutic strategies. Nat. Rev. Clin. Oncol. 2023, 20, 470–486. [Google Scholar] [CrossRef] [PubMed]
- Rimini, M.; Rizzato, M.; Rimassa, L.; Niger, M.; Fornaro, L.; Antonuzzo, L.; Martinelli, E.; Garajová, I.; Pastorino, A.; Giordano, G.; et al. P-343 The impact of genomic alterations on response rate and survival outcomes in advanced BTC patients who receive cisplatin/gemcitabine plus durvalumab in clinical practice. Ann. Oncol. 2023, 34, S135. Available online: http://www.annalsofoncology.org/article/S0923753423005410/fulltext (accessed on 12 November 2023). [CrossRef]
- Roth, G.S.; Neuzillet, C.; Sarabi, M.; Edeline, J.; Malka, D.; Lièvre, A. Cholangiocarcinoma: What are the options in all comers and how has the advent of molecular profiling opened the way to personalised medicine? Eur. J. Cancer 2023, 179, 1–14. Available online: https://pubmed.ncbi.nlm.nih.gov/36463640/ (accessed on 9 May 2024). [CrossRef]
- Van de Haar, J.; Hoes, L.R.; Roepman, P.; Lolkema, M.P.; Verheul, H.M.W.; Gelderblom, H.; de Langen, A.J.; Smit, E.F.; Cuppen, E.; Wessels, L.F.A.; et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nat. Med. 2021, 27, 1553–1563. Available online: https://pubmed.ncbi.nlm.nih.gov/34373653/ (accessed on 9 May 2024). [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.; Barlesi, F.; Lolkema, M.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. Available online: https://pubmed.ncbi.nlm.nih.gov/32853681/ (accessed on 9 May 2024). [CrossRef] [PubMed]
- Mateo, J.; Chakravarty, D.; Dienstmann, R.; Jezdic, S.; Gonzalez-Perez, A.; Lopez-Bigas, N.; Ng, C.K.Y.; Bedard, P.L.; Tortora, G.; Douillard, J.-Y.; et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 2018, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, H.; Saurí, T.; Acosta, D.A.; Guardiola, M.; Sierra, A.; Hernando, J.; Nuciforo, P.; Miquel, J.M.; Molero, C.; Peiró, S.; et al. ESMO Scale for Clinical Actionability of Molecular Targets Driving Targeted Treatment in Patients with Cholangiocarcinoma. Clin. Cancer Res. 2022, 28, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Lamarca, A.; Goyal, L.; Barriuso, J.; Zhu, A.X. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov. 2017, 7, 943–962. [Google Scholar] [CrossRef] [PubMed]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Ni Huang, M.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): Amulticentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients with Advanced Cholangiocarcinoma with IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. Available online: https://pubmed.ncbi.nlm.nih.gov/34554208/ (accessed on 9 May 2024). [CrossRef]
- Rimini, M.; Puzzoni, M.; Pedica, F.; Silvestris, N.; Fornaro, L.; Aprile, G.; Loi, E.; Brunetti, O.; Vivaldi, C.; Simionato, F.; et al. Cholangiocarcinoma: New perspectives for new horizons. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1367–1383. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.P.; El-Rayes, B.F.; Tolcher, A.W.; Patnaik, A.; Rasco, D.W.; Harvey, R.D.; LoRusso, P.M.; Sachdev, J.C.; Abbadessa, G.; Savage, R.E.; et al. A Phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br. J. Cancer 2017, 117, 1592–1599. Available online: https://pubmed.ncbi.nlm.nih.gov/28972963/ (accessed on 9 May 2024). [CrossRef]
- Nogova, L.; Sequist, L.V.; Garcia, J.M.P.; Andre, F.; Delord, J.-P.; Hidalgo, M.; Schellens, J.H.; Cassier, P.A.; Camidge, D.R.; Schuler, M.; et al. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. J. Clin. Oncol. 2017, 35, 157–165. Available online: https://pubmed.ncbi.nlm.nih.gov/27870574/ (accessed on 9 May 2024).
- Meric-Bernstam, F.; Bahleda, R.; Hierro, C.; Sanson, M.; Bridgewater, J.; Arkenau, H.T.; Tran, B.; Kelley, R.K.; Park, J.O.; Javle, M.; et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2022, 12, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; El-Rayes, B.F.; Droz Dit Busset, M.; Cotsoglou, C.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Personeni, N.; Braiteh, F.; et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br. J. Cancer 2019, 120, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.-T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Lodl, E.; Ramnaraign, B.; Sahin, I.; Wheeler, S. Updates in the use of targeted therapies for the treatment of cholangiocarcinoma. J. Oncol. Pharm. Pract. 2023, 29, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. Available online: https://pubmed.ncbi.nlm.nih.gov/36652354/ (accessed on 9 May 2024). [CrossRef]
- Subbiah, V.; Sahai, V.; Maglic, D.; Bruderek, K.; Toure, B.B.; Zhao, S.; Valverde, R.; O’Hearn, P.J.; Moustakas, D.T.; Schönherr, H.; et al. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations. Cancer Discov. 2023, 13, 2012–2031. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Fonkoua, L.A.K.; Mahipal, A.; Liao, C.-Y.; Fountzilas, C.; Li, D.; Pelster, M.S.; Goel, S.; Peng, P.; Sun, C.; et al. 95MO Tinengotinib in patients with advanced, fibroblast growth factor receptor (FGFR) inhibitor refractory/relapsed cholangiocarcinoma. Ann. Oncol. 2023, 34, S215–S216. Available online: https://www.annalsofoncology.org/article/S0923-7534(23)02225-1/fulltext (accessed on 20 May 2024). [CrossRef]
- Lee, C.K.; Chon, H.J.; Cheon, J.; Lee, M.A.; Im, H.S.; Jang, J.S.; Kim, M.H.; Park, S.; Kang, B.; Hong, M.; et al. Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer refractory to gemcitabine and cisplatin: A multi-institutional phase 2 trial of the Korean Cancer Study Group (KCSG-HB19-14). Lancet Gastroenterol. Hepatol. 2023, 8, 56–65. Available online: https://pubmed.ncbi.nlm.nih.gov/36328033/ (accessed on 9 May 2024). [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. Available online: https://pubmed.ncbi.nlm.nih.gov/34339623/ (accessed on 9 May 2024). [CrossRef]
- Harding, J.J.; Fan, J.; Oh, D.-Y.; Choi, H.J.; Kim, J.W.; Chang, H.-M.; Bao, L.; Sun, H.-C.; Macarulla, T.; Xie, F.; et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): A multicentre, single-arm, phase 2b study. Lancet Oncol. 2023, 24, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Mizuno, N.; Sunakawa, Y.; Canon, J.-L.; Galsky, M.D.; Hamilton, E.; Hayashi, H.; Jerusalem, G.; Kim, S.T.; Lee, K.-W.; et al. Tucatinib and Trastuzumab for Previously Treated Human Epidermal Growth Factor Receptor 2-Positive Metastatic Biliary Tract Cancer (SGNTUC-019): A Phase II Basket Study. J. Clin. Oncol. 2023, 41, 5569–5578. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; de Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.-I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and Trametinib in Patients with Tumors with BRAFV600E Mutations: Results of the NCI-MATCH Trial Subprotocol H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.-Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Ostwal, V.; Mandavkar, S.; Bhargava, P.; Srinivas, S.; Kapoor, A.; Shetty, O.; Kannan, S.; Chaugule, D.; Patil, R.; Parulekar, M.; et al. Trastuzumab Plus Gemcitabine-Cisplatin for Treat-ment-Naïve Human Epidermal Growth Factor Receptor 2-Positive Biliary Tract Adenocarcinoma: A Multicenter, Open-Label, Phase II Study (TAB). J. Clin. Oncol. 2024, 42, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020, 21, 1234–1243. Available online: https://pubmed.ncbi.nlm.nih.gov/32818466/ (accessed on 9 May 2024). [CrossRef]
- Valery, M.; Vasseur, D.; Fachinetti, F.; Boilève, A.; Smolenschi, C.; Tarabay, A.; Antoun, L.; Perret, A.; Fuerea, A.; Pudlarz, T.; et al. Targetable Molecular Alterations in the Treatment of Biliary Tract Cancers: An Overview of the Available Treatments. Cancers 2023, 15, 4446. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. Available online: https://pubmed.ncbi.nlm.nih.gov/29466156/ (accessed on 9 May 2024). [CrossRef]
- Kato, S.; Subbiah, V.; Marchlik, E.; Elkin, S.K.; Carter, J.L.; Kurzrock, R. RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients. Clin. Cancer Res. 2017, 23, 1988–1997. Available online: https://pubmed.ncbi.nlm.nih.gov/27683183/ (accessed on 9 May 2024). [CrossRef]
- Subbiah, V.; Cassier, P.A.; Siena, S.; Garralda, E.; Paz-Ares, L.; Garrido, P.; Nadal, E.; Vuky, J.; Lopes, G.; Kalemkerian, G.P.; et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion–positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 2022, 28, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Bekaii-Saab, T.S.; Yaeger, R.; Spira, A.I.; Pelster, M.S.; Sabari, J.K.; Hafez, N.; Barve, M.; Velastegui, K.; Yan, X.; Shetty, A.; et al. Adagrasib in Advanced Solid Tumors Harboring a KRASG12C Mutation. J. Clin. Oncol. 2023, 41, 4097–4106. [Google Scholar] [CrossRef] [PubMed]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Boerner, T.; Drill, E.; Pak, L.M.; Nguyen, B.; Sigel, C.S.; Doussot, A.; Shin, P.; Goldman, D.A.; Gonen, M.; Allen, P.J.; et al. Genetic Determinants of Outcome in Intrahepatic Cholangi-ocarcinoma. Hepatology 2021, 74, 1429–1444. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, K.E.; Javle, M.; Heyne, K.; Shroff, R.T.; Abdel-Wahab, R.; Gupta, N.; Mobley, C.M.; Saharia, A.; Victor, D.W.; Nguyen, D.T.; et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: A prospective case-series. Lancet Gastroenterol. Hepatol. 2018, 3, 337–348. [Google Scholar] [CrossRef] [PubMed]
- McMillan, R.R.; Javle, M.; Kodali, S.; Saharia, A.; Mobley, C.; Heyne, K.; Hobeika, M.J.; Lunsford, K.E.; Victor, D.W.; Shetty, A.; et al. Survival following liver transplantation for locally advanced, unresectable intrahepatic cholangiocarcinoma. Am. J. Transplant. 2022, 22, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, B.A.; Xiu, J.; Lindberg, M.R.; Shields, A.F.; Hwang, J.J.; Poorman, K.; Salem, M.E.; Pishvaian, M.J.; Holcombe, R.F.; Marshall, J.L.; et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J. Gastrointest. Oncol. 2019, 10, 652–662. Available online: https://pubmed.ncbi.nlm.nih.gov/31392046/ (accessed on 10 June 2024). [CrossRef]
- Mody, K.; Jain, P.; El-Refai, S.M.; Azad, N.S.; Zabransky, D.J.; Baretti, M.; Shroff, R.T.; Kelley, R.K.; El-Khouiery, A.B.; Hockenberry, A.J.; et al. Clinical, Genomic, and Transcriptomic Data Profiling of Biliary Tract Cancer Reveals Subtype-Specific Immune Signatures. JCO Precis. Oncol. 2022, 6, e2100510. Available online: https://pubmed.ncbi.nlm.nih.gov/35675577/ (accessed on 10 June 2024). [CrossRef]
Mutation | Frequency in CCA | ESCAT |
---|---|---|
IDH-1 mutation | 1–18% iCCA: 8–18% | I A |
FGFR2 fusion/rearrangement | <10% iCCA: 5–15% | I B |
HER2 overexpression/amplification | 5–10% pCCA/dCCA/GBC: 10–20% | I C |
MSI/dMMR | <1% | I C |
BRAF V600E | 1–5% | II B |
NRTK fusion | <1% | I C |
KRAS mutation | <1% | II B |
RET fusion | 1% | I C |
Target | Trial | Drug | Phase | Cohort | Patient Number | Primary Endpoint | ORR | mPFS Months | mOS Months |
---|---|---|---|---|---|---|---|---|---|
FGFR2 fusion/rearrangement | FIGHT-202 [35] | Pemigatinib | II | FGFR2 fusion/rearrangement | 108 | ORR | 37% | 7.0 (6.1–10.5) | 17.5 (14.4–22.9) |
FOENIX-CCA2 [36] | Futibatinib | II | FGFR2 fusion/rearrangement | 103 | ORR | 41.7% | 9.0 (6.9–13.1) | 21.7 (14.5–NR) | |
ReFocus [37] | RLY-4008 | I/II | FGFR fusion/rearrangement or other alterations in FGFRi-naive CCA | 38 | ORR | 53% | 6.9 | - | |
IDH-1 mutation | ClarIDHy [25,26] | Ivosidenib | III | CCA with IDH-1 mutation and progression on prior therapy | 230 | PFS | 2% | 2.7 (1.4 on placebo arm) | 10.3 (5.1 on placebo arm) |
HER2 overexpression/amplification | My Pathway [38] | Pertuzumab plus trastuzumab | II a b Basket | Previously treated BTCs with HER2 amplification/overexpression | 11 BTCs 8 amplifications, 3 mutations | ORR | 3/8 1/3 | 4.2 2.8 | - |
HERIZON-BTC-01 [39] | Zanidatimab | II b | Previously treated BTCs with HER2 amplification/overexpression | 80 | ORR | 41.3% | 5.5 | - | |
KCSG-HB19-14 [40] | Trastuzumab plus modified FOLFOX | II | HER2+ BTCs and GEMCIS progression | 34 | ORR | 29.4% | 5.1 | - | |
SGNTUC-019 [41] | Trastuzumab plus tucatinib | II | Previously treated HER2+ metastatic BTCs with no prior HER2-directed therapy | 30 | ORR | 46.7% | 5.5 | 53.6 | |
TAB [42] | Trastuzumab plus GEMCIS | II | HER2+ treatment-naïve BTCs | 90 | ORR | 55.5% | 7 | - | |
BRAF V600E | EAY131-H [43] | Dabrafenib plus trametinib | BRAF V600E patients on progression | 4 | ORR | 38% | 11.4 | 28.6 | |
ROAR [44,45] | II | BTCs with BRAF V600E | 43 | PFS | 42% | 9 | 13.5 | ||
MSI/dMMR | KEYNOTE-158 [46] | Pembrolizumab | II | Previously treated advanced BTC patients with MSI/dMMR | 22 | ORR | 40.9% | 4.2 | 24.3 |
KRAS | KRYSTAL-1 [47] | Adagrasib | II | KRASG12C-mutated advanced solid tumors | 12 | ORR | 47.1% | 8.6 | 15.1 |
NTRK | Larotrectinib [48] | I/II | TRK fusion + patients | 55 | ORR | 75% | - | - | |
ALKA-372-001 STARTRK-1 STARTRK-2 | Entrectinib [49] | I/II | Metastatic or locally advanced NTRK fusion + solid tumors | 54 | ORR and mDR | 57% | 11.2 | 21 | |
RET | ARROW [50] | Pralsetinib | I/II | RET fusion + solid tumor types | 29 | ORR | 57% | 7 | 14 |
LIBRETTO-001 [51] | Selpercatinib | I/II | RET fusion + non-lung or thyroid advanced solid tumors on progression on or after previous systemic therapy | 45 | ORR | 43.9% | 13.2 | 186 |
Target Therapy | Main Side Effects |
---|---|
IDH-1 mutation inhibitors | Nausea, diarrhea, leukocytosis, and fatigue |
FGFR2 fusion/rearrangement inhibitors | Hyperphosphatemia, fatigue, dry mouth, and alopecia |
HER2 inhibitors | Cardiotoxicity, diarrhea, and nausea |
MSI/dMMR inhibitors | Fatigue, rash, pruritus, and immune-related adverse events |
BRAF inhibitors | Arthralgia, rash, fatigue, and nausea |
NTRK fusion inhibitors | Dizziness, fatigue, constipation, and anemia |
KRAS mutation inhibitors | Nausea, diarrhea, hepatotoxicity, and visual disturbances |
RET fusion inhibitors | Hypertension, diarrhea, elevated liver enzymes, and dry mouth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ros-Buxó, M.; Mauro, E.; Sauri, T.; Iserte, G.; Fuster-Anglada, C.; Díaz, A.; Sererols-Viñas, L.; Affo, S.; Forner, A. Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies. Curr. Oncol. 2024, 31, 3615-3629. https://doi.org/10.3390/curroncol31070266
Ros-Buxó M, Mauro E, Sauri T, Iserte G, Fuster-Anglada C, Díaz A, Sererols-Viñas L, Affo S, Forner A. Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies. Current Oncology. 2024; 31(7):3615-3629. https://doi.org/10.3390/curroncol31070266
Chicago/Turabian StyleRos-Buxó, Mar, Ezequiel Mauro, Tamara Sauri, Gemma Iserte, Carla Fuster-Anglada, Alba Díaz, Laura Sererols-Viñas, Silvia Affo, and Alejandro Forner. 2024. "Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies" Current Oncology 31, no. 7: 3615-3629. https://doi.org/10.3390/curroncol31070266
APA StyleRos-Buxó, M., Mauro, E., Sauri, T., Iserte, G., Fuster-Anglada, C., Díaz, A., Sererols-Viñas, L., Affo, S., & Forner, A. (2024). Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies. Current Oncology, 31(7), 3615-3629. https://doi.org/10.3390/curroncol31070266