The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, S.; De Simone, G.; Boccia, G.; De Caro, F.; Pagliano, P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J. Glob. Antimicrob. Resist. 2017, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Purba, A.K.R.; Mariana, N.; Aliska, G.; Wijaya, S.H.; Wulandari, R.R.; Hadi, U.; Hamzah; Nugroho, C.W.; Postma, M.J. The burden and costs of sepsis and reimbursement of its treatment in a developing country: An observational study on focal infections in Indonesia. Int. J. Infect. Dis. 2020, 96, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. Working group on sepsis-related problems of the European society of intensive care medicine: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Relja, B.; Land, W.G. Damage-associated molecular patterns in trauma. Eur. J. Trauma Emerg. Surg. 2020, 46, 751–775. [Google Scholar] [CrossRef]
- Eckle, I.; Seitz, R.; Egbring, R.; Kolb, G.; Havemann, K. Protein C degradation in vitro by neutrophil elastase. Biol. Chem. Hoppe Seyler 1991, 372, 1007–1013. [Google Scholar] [CrossRef]
- Biemond, B.J.; Levi, M.; Cate, H.T.; van der Poll, T.; Büller, H.R.; Hack, C.E.; Cate, J.W.T. Plasminogen activator and plasminogen activator inhibitor I—Release during experimental endotoxaemia in chimpanzees: Effect of interventions in the cytokine and coagulation cascades. Clin. Sci. 1995, 88, 587–594. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg REJr Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.G.; Karl, I.E. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 2001, 166, 6952–6963. [Google Scholar] [CrossRef]
- Heagy, W.; Hansen, C.; Nieman, K.; Cohen, M.; Richardson, C.; Rodriguez, J.L.; West, M.A. Impaired ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor production may identify “septic” intensive care unit patients. Shock 2000, 14, 271–276. [Google Scholar] [CrossRef]
- Patera, A.C.; Drewry, A.M.; Chang, K.; Beiter, E.R.; Osborne, D.; Hotchkiss, R.S. Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J. Leukoc. Biol. 2016, 100, 1239–1254. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Wilson, J.K.; Zhao, Y.; Singer, M.; Spencer, J.; Shankar-Hari, M. Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis-pilot study. Crit. Care 2018, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Turnis, M.E.; Andrews, L.P.; Vignali, D.A. Inhibitory receptors as targets for cancer immunotherapy. Eur. J. Immunol. 2015, 45, 1892–1905. [Google Scholar] [CrossRef]
- Chang, K.; Svabek, C.; Vazquez-Guillamet, C.; Sato, B.; Rasche, D.; Wilson, S.; Robbins, P.; Ulbrandt, N.; Suzich, J.; Green, J.; et al. Targeting the programmed cell death 1: Programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care 2014, 18, R3. [Google Scholar] [CrossRef]
- Guillerey, C.; Huntington, N.D.; Smyth, M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 2016, 17, 1025–1036. [Google Scholar] [CrossRef]
- Keir, M.E.; Francisco, L.M.; Sharpe, A.H. PD-1 and its ligands in T-cell immunity. Curr. Opin. Immunol. 2007, 19, 309–314. [Google Scholar] [CrossRef]
- Venet, F.; Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef]
- Holub, M.; Dzupova, O.; Ruzkova, M.; Stranikova, A.; Bartakova, E.; Maca, J.; Benes, J.; Herwald, H.; Beran, O. Selected Biomarkers Correlate with the Origin and Severity of Sepsis. Mediat. Inflamm. 2018, 2018, 7028267. [Google Scholar] [CrossRef]
- Okazaki, T.; Maeda, A.; Nishimura, H.; Kurosaki, T.; Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 2001, 98, 13866–13871. [Google Scholar] [CrossRef]
- Jubel, J.M.; Barbati, Z.R.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. The role of PD-1 in acute and chronic infection. Front. Immunol. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Wei, L.; Zhang, Y.; Sheng, J.; Wu, W.; Zhang, Y. Immune checkpoint receptors Tim-3 and PD-1 regulate monocyte and T lymphocyte function in septic patients. Mediat. Inflamm. 2018, 2018, 1632902. [Google Scholar] [CrossRef] [PubMed]
- Greisen, S.R.; Rasmussen, T.K.; Stengaard-Pedersen, K.; Hetland, M.L.; Hørslev Petersen, K.; Hvid, M.; Deleuran, B. Increased soluble programmed death-1 (sPD-1) is associated with disease activity and radiographic progression in early rheumatoid arthritis. Scand. J. Rheumatol. 2014, 43, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Kang, P.J.; Chuang, Y.H.; Wang, Y.H.; Jan, M.C.; Wu, C.F.; Lin, C.L.; Liu, C.J.; Liaw, Y.F.; Lin, S.M.; et al. Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS ONE 2014, 9, e95870. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, B.; Yuan, Y.; Li, D.; Han, L.F.; Liu, Y.; Gong, W.; Wu, F.H.; Zhang, G.M.; Feng, Z.H. Soluble PD-l facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin. Cancer Res. 2007, 13, 1823–1830. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Gao, D.N.; Yang, Z.X.; Qi, Q.H. Roles of PD-1, Tim-3 and CTLA-4 in immunoregulation in regulatory T cells among patients with sepsis. Int. J. Clin. Exp. Med. 2015, 8, 18998–19005. [Google Scholar]
- Jia, Y.; Zhao, Y.; Li, C.; Shao, R. The Expression of Programmed Death-1 on CD4+ and CD8+ T Lymphocytes in Patients with Type 2 Diabetes and Severe Sepsis. PLoS ONE 2016, 11, e0159383. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, Y.; Li, C.; Shao, R.; Fang, Y. Predictive Value of Soluble Programmed Death-1 for Severe Sepsis and Septic Shock During the First Week in an Intensive Care Unit. Shock 2019, 51, 289–297. [Google Scholar] [CrossRef]
- Arens, C.; Bajwa, S.A.; Koch, C.; Siegler, B.H.; Schneck, E.; Hecker, A.; Weiterer, S.; Lichtenstern, C.; Weigand, M.A.; Uhle, F. Sepsis-induced long-term immune paralysis-results of a descriptive, explorative study. Crit. Care 2016, 20, 93. [Google Scholar] [CrossRef]
- Pan, T.; Liu, Z.; Yin, J.; Zhou, T.; Liu, J.; Qu, H. Notch Signaling Pathway Was Involved in Regulating Programmed Cell Death 1 Expression during Sepsis-Induced Immunosuppression. Mediat. Inflamm. 2015, 2015, 539841. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Fang, Y.; Yu, H.; Zhao, L.; Jiang, Z.; Li, C.S. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: A prospective cohort study. Crit. Care 2016, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Zhou, T.; Li, L.; Liu, Z.; Chen, Y.; Mao, E.; Li, M.; Qu, H.; Liu, J. Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis. Crit. Care 2017, 21, 186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jia, Y.; Li, C.; Fang, Y.; Shao, R. The risk stratification and prognostic evaluation of soluble programmed death-1 on patients with sepsis in emergency department. Am. J. Emerg. Med. 2018, 36, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, X.; Chen, H.; Wang, G.; Zhang, J.; Dong, P.; Liu, Y.; An, S.; Wang, L. Serum sPD-L1, Upregulated in Sepsis, May Reflect Disease Severity and Clinical Outcomes in Septic Patients. Scand. J. Immunol. 2017, 85, 66–72. [Google Scholar] [CrossRef]
- Liu, Q.; An, L.; Qi, Z.; Zhao, Y.; Li, C. Increased Expression of Programmed Cell Death-1 in Regulatory T Cells of Patients with Severe Sepsis and Septic Shock: An Observational Clinical Study. Scand. J. Immunol. 2017, 86, 408–417. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Y.; Liu, Z.; Tian, R.; Liu, J.; Chen, E.; Mao, E.; Pan, T.; Qu, H. Serum-soluble PD-L1 may be a potential diagnostic biomarker in sepsis. Scand. J. Immunol. 2021, 94, e13049. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, G.; Li, C. Expression of peripheral monocytic programmed death ligand-1 in severe sepsis combined with HBV-related cirrhosis. A pilot observational study. Cent. Eur. J. Immunol. 2021, 46, 217–224. [Google Scholar] [CrossRef]
- Brown, K.E.; Freeman, G.J.; Wherry, E.J.; Sharpe, A.H. Role of PD-1 in regulating acute infections. Curr. Opin. Immunol. 2010, 22, 397–401. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Honjo, T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol. 2007, 19, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Gianchecchi, E.; Delfino, D.V.; Fierabracci, A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun. Rev. 2013, 12, 1091–1100. [Google Scholar] [CrossRef]
- Guignant, C.; Lepape, A.; Huang, X.; Kherouf, H.; Denis, L.; Poitevin, F.; Malcus, C.; Chéron, A.; Allaouchiche, B.; Gueyffier, F.; et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care 2011, 15, R99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Lou, J.; Zhou, Y.; Bo, L.; Zhu, J.; Zhu, K.; Wan, X.; Cai, Z.; Deng, X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit. Care 2011, 15, R70. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Jia, R.; Zhang, X.; Fang, Q.; Huang, L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell. Immunol. 2014, 290, 72–79. [Google Scholar] [CrossRef]
- Huang, X.; Venet, F.; Wang, Y.L.; Lepape, A.; Yuan, Z.; Chen, Y.; Swan, R.; Kherouf, H.; Monneret, G.; Chung, C.S.; et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. USA 2009, 106, 6303–6308. [Google Scholar] [CrossRef]
- He, Y.F.; Zhang, G.M.; Wang, X.H.; Zhang, H.; Yuan, Y.; Li, D.; Feng, Z.H. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J. Immunol. 2004, 173, 4919–4928. [Google Scholar] [CrossRef]
- Brahmamdam, P.; Inoue, S.; Unsinger, J.; Chang, K.C.; McDunn, J.E.; Hotchkiss, R.S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukoc. Biol. 2010, 88, 233–240. [Google Scholar] [CrossRef]
- Kasztelan-Szczerbinska, B.; Adamczyk, K.; Surdacka, A.; Rolinski, J.; Michalak, A.; Bojarska-Junak, A.; Szczerbinski, M.; Cichoz-Lach, H. Gender-related disparities in the frequencies of PD-1 and PD-L1 positive peripheral blood T and B lymphocytes in patients with alcohol-related liver disease: A single center pilot study. Peer J. 2021, 9, e10518. [Google Scholar] [CrossRef]
Screening Stage | Questions | Results |
---|---|---|
Title and abstract screening |
| Study included if all questions are answered with ‘yes’ |
Full text screening |
| Study included if all questions are answered with ‘yes’ |
Reference | Study Design | n | Patients | Outcome |
---|---|---|---|---|
Gao et al., 2015 [27] | Cross sectional | 367 | 182 septic patients (54 mild sepsis, 46 severe sepsis, 82 septic shock), 185 healthy controls |
|
Jia et al., 2016 [28] | Prospective and observational study | 295 | 80 T2DM patients without sepsis, 88 severe septic (SS) patients without T2DM (29 non-survivors), 77 SS patients + T2DM (24 non-survivors), 50 healthy controls |
|
Zhao et al., 2019 [29] | Cohort study | 157 | 72 severe septic patients, 40 septic shock patients, 45 healthy controls; 112 septic patients were separated into 73 survivors and 39 non-survivors |
|
Arens et al., 2016 [30] | Cross sectional | 16 | 8 septic patients, 8 healthy controls |
|
Chang et al., 2014 [15] | Cross sectional | 58 | 43 septic patients, 15 non-septic patients |
|
Pan et al., 2015 [31] | Observational/clinical study | 86 | 56 septic shock patients, 30 healthy controls |
|
Shao et al., 2016 [32] | Prospective cohort study | 164 | 59 septic patients, 76 septic shock patients (49 survivors, 27 non-survivors), 29 healthy controls |
|
Pan et al., 2017 [33] | Prospective study | 95 | 63 acute pancreatitis (25 with IC, 38 non-IC), 32 healthy controls |
|
Zhao et al., 2017 [34] | Prospective cohort study | 655 | 595 emergency department (ED) patients (130 SIRS, 276 sepsis, 121 severe sepsis, 68 septic shock; 465 septic patients were separated into 349 survivors and 116 non-survivors), 60 healthy controls |
|
Liu et al., 2016 [35] | Observation study | 120 | 91 septic patients (53 survivors and 38 non-survivors), 29 healthy controls |
|
Liu et al., 2017 [36] | Observation study | 139 | 78 severe septic patients, 40 septic shock patients, 21 healthy controls; 118 septic patients were separated into 60 survivors and 58 non-survivors |
|
Reference | Study Design | n | Patients | Outcome |
Sun et al., 2021 [37] | Cross sectional | 156 | 64 septic patients, 29 appendicitis patients, 33 acute pancreatitis patients, 30 healthy controls |
|
Zhao et al., 2019 [29] | Cohort study | 157 | 72 severe septic patients, 40 septic shock patients, 45 healthy patients |
|
Arens et al., 2016 [30] | Cross sectional | 16 | 8 septic patients, 8 healthy controls |
|
Chang et al., 2014 [15] | Cross sectional | 58 | 43 septic patients, 15 non-septic patients |
|
Pan et al., 2015 [31] | Observational/clinical study | 86 | 56 septic shock patients, 30 healthy controls |
|
Shao et al., 2016 [32] | Prospective cohort study | 164 | 59 septic patients, 76 septic shock patients (49 survivors, 27 non-survivors), 29 healthy controls |
|
Lu et al., 2021 [38] | Observational pilot study | 117 | 30 liver cirrhosis (LC) patients, 70 liver cirrhosis + severe sepsis (LC + SS) patients (59 with SS-induced acute on chronic liver failure (ACLF); 37 survivors, 22 non-survivors), 17 healthy controls (HC) |
|
Pan et al., 2017 [33] | Prospective study | 64 | 63 acute pancreatitis (25 with IC, 38 non-IC), 32 healthy controls |
|
Liu et al., 2016 [35] | Observation study | 120 | 91 septic patients (53 survivors and 38 non-survivors), 29 healthy controls. |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sari, M.I.; Ilyas, S. The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review. Diagnostics 2022, 12, 2004. https://doi.org/10.3390/diagnostics12082004
Sari MI, Ilyas S. The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review. Diagnostics. 2022; 12(8):2004. https://doi.org/10.3390/diagnostics12082004
Chicago/Turabian StyleSari, Mutiara Indah, and Syafruddin Ilyas. 2022. "The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review" Diagnostics 12, no. 8: 2004. https://doi.org/10.3390/diagnostics12082004
APA StyleSari, M. I., & Ilyas, S. (2022). The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review. Diagnostics, 12(8), 2004. https://doi.org/10.3390/diagnostics12082004