The Usefulness of Rare Blood Group Systems in the Risk Determination for Severe COVID-19
Abstract
:1. Introduction
2. The ABO System and COVID-19
3. Hypothesis
4. Explanation of Proposed Hypothesis
4.1. Forssman Synthetase
4.2. Forssman Antigen and Diseases
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.R. Forty Years with Coronaviruses. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome Composition and Divergence of the Novel Coronavirus (2019-NCoV) Originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masters, P.S. The Molecular Biology of Coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Dveksler, G.S.; Dieffenbach, C.W.; Cardellichio, C.B.; McCuaig, K.; Pensiero, M.N.; Jiang, G.S.; Beauchemin, N.; Holmes, K.V. Several Members of the Mouse Carcinoembryonic Antigen-Related Glycoprotein Family Are Functional Receptors for the Coronavirus Mouse Hepatitis Virus-A59. J. Virol. 1993, 67, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Cauchemez, S.; Fraser, C.; Van Kerkhove, M.D.; Donnelly, C.A.; Riley, S.; Rambaut, A.; Enouf, V.; van der Werf, S.; Ferguson, N.M. Middle East Respiratory Syndrome Coronavirus: Quantification of the Extent of the Epidemic, Surveillance Biases, and Transmissibility. Lancet Infect. Dis. 2014, 14, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200727-covid-19-sitrep-189.pdf?sfvrsn=b93a6913_2 (accessed on 27 July 2020).
- Dömling, A.; Gao, L. Chemistry and Biology of SARS-CoV-2. Chem 2020, 6, 1283–1295. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Li, Y.-C.; Wang, S.-C.; Dai, Q.-Q.; Jiang, X.-S.; Zuo, S.; Jia, L.; Zheng, J.-B.; Wang, H.-L. Clinical Characteristics of Patients with COVID-19 Presenting with Gastrointestinal Symptoms as Initial Symptoms: Retrospective Case Series. World J. Clin. Cases 2020, 8, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.; Long, B.; Holladay, D.; Gottlieb, M. Thrombotic Complications of COVID-19. Am. J. Emerg. Med. 2021, 39, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and Tissue Factor-Enriched Neutrophil Extracellular Traps Are Key Drivers in COVID-19 Immunothrombosis. J. Clin. Invest. 2020, 130. [Google Scholar] [CrossRef]
- Guillon, P.; Clément, M.; Sébille, V.; Rivain, J.-G.; Chou, C.-F.; Ruvoën-Clouet, N.; Le Pendu, J. Inhibition of the Interaction between the SARS-CoV Spike Protein and Its Cellular Receptor by Anti-Histo-Blood Group Antibodies. Glycobiology 2008, 18, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Cheng, Y.; Cheng, G.; Chui, C.H.; Lau, F.Y.; Chan, P.K.S.; Ng, M.H.L.; Sung, J.J.Y.; Wong, R.S.M. ABO Blood Group and Susceptibility to Severe Acute Respiratory Syndrome. JAMA 2005, 293, 1450–1451. [Google Scholar] [CrossRef] [PubMed]
- Severe Covid-19 GWAS Group; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Forssman, J. Die Herstellung Hochwertiger Spezifischer Schaf-Hamolysine Ohne Verwendung von Schafblut. Biochem. Z. 1911, 37, 78–115. [Google Scholar]
- Haslam, D.B.; Baenziger, J.U. Expression Cloning of Forssman Glycolipid Synthetase: A Novel Member of the Histo-Blood Group ABO Gene Family. Proc. Natl. Acad. Sci. USA 1996, 93, 10697–10702. [Google Scholar] [CrossRef] [Green Version]
- Cid, E.; Yamamoto, M.; Yamamoto, F. Blood Group ABO Gene-Encoded A Transferase Catalyzes the Biosynthesis of FORS1 Antigen of FORS System upon Met69Thr/Ser Substitution. Blood Adv. 2018, 2, 1371–1381. [Google Scholar] [CrossRef]
- Yamamoto, M.; Cid, E.; Yamamoto, F. Molecular Genetic Basis of the Human Forssman Glycolipid Antigen Negativity. Sci. Rep. 2012, 2, 975. [Google Scholar] [CrossRef] [Green Version]
- Barr, K.; Korchagina, E.; Popova, I.; Bovin, N.; Henry, S. Monoclonal Anti-A Activity against the FORS1 (Forssman) Antigen. Transfusion 2015, 55, 129–136. [Google Scholar] [CrossRef]
- van Genderen, I.L.; van Meer, G.; Slot, J.W.; Geuze, H.J.; Voorhout, W.F. Subcellular Localization of Forssman Glycolipid in Epithelial MDCK Cells by Immuno-Electronmicroscopy after Freeze-Substitution. J. Cell Biol. 1991, 115, 1009–1019. [Google Scholar] [CrossRef]
- Luetscher, R.N.D.; McKitrick, T.R.; Gao, C.; Mehta, A.Y.; McQuillan, A.M.; Kardish, R.; Boligan, K.F.; Song, X.; Lu, L.; Heimburg-Molinaro, J.; et al. Unique Repertoire of Anti-Carbohydrate Antibodies in Individual Human Serum. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Svensson, L.; Hult, A.K.; Stamps, R.; Ångström, J.; Teneberg, S.; Storry, J.R.; Jørgensen, R.; Rydberg, L.; Henry, S.M.; Olsson, M.L. Forssman Expression on Human Erythrocytes: Biochemical and Genetic Evidence of a New Histo-Blood Group System. Blood 2013, 121, 1459–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Cid, E.; Yamamoto, F. Crosstalk between ABO and Forssman (FORS) Blood Group Systems: FORS1 Antigen Synthesis by ABO Gene-Encoded Glycosyltransferases. Sci. Rep. 2017, 7, 41632. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Cid, E.; Yamamoto, F. ABO Blood Group A Transferases Catalyze the Biosynthesis of FORS Blood Group FORS1 Antigen upon Deletion of Exon 3 or 4. Blood Adv. 2017, 1, 2756–2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galili, U. Human Natural Antibodies to Mammalian Carbohydrate Antigens as Unsung Heroes Protecting against Past, Present, and Future Viral Infections. Antibodies 2020, 9, 25. [Google Scholar] [CrossRef]
- Hult, A.K.; Olsson, M.L. May the FORS Be with You: A System Sequel. Immunohematology 2020, 36, 14–18. [Google Scholar] [CrossRef]
- Taniguchi, N.; Yanagisawa, K.; Makita, A.; Mizuno, F.; Osato, T. Globoside and Forssman Synthases in Human Lymphocytes Exposed to Epstein-Barr Virus and Mitogens. J. Natl. Cancer Inst. 1985, 74, 563–568. [Google Scholar] [PubMed]
- Taniguchi, N.; Yokosawa, N.; Narita, M.; Mitsuyama, T.; Makita, A. Expression of Forssman Antigen Synthesis and Degradation in Human Lung Cancer. J. Natl. Cancer Inst. 1981, 67, 577–583. [Google Scholar]
- Casacó, A.; Carvajal, D.; Friman, M.; Noa, M. Interference of Levamisole with Forssman Shock. Thromb. Res. 1990, 59, 629–637. [Google Scholar] [CrossRef]
- Nagai, H.; Yakuo, I.; Inagaki, N.; Koda, A.; Hamano, S.; Ujiie, A.; Nakazawa, M. Role of Thromboxane (Tx) A2 in Guinea Pig Forssman Shock and the Effect of OKY-046, Tx A2 Synthetase Inhibitor. Prostaglandins Leukot. Med. 1987, 26, 133–141. [Google Scholar] [CrossRef]
- Fan, L.; Meng, H.; Guo, X.; Li, X.; Meng, F. Differential Gene Expression Profiles in Peripheral Blood in Northeast Chinese Han People with Acute Myocardial Infarction. Genet. Mol. Biol. 2018, 41, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.; Zhang, H.; Greger, L.; Silva, A.-L.; Massey, D.; Dawson, C.; Metz, A.; Ibrahim, A.; Parkes, M. Mucosal Genome-Wide Methylation Changes in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2012, 18, 2128–2137. [Google Scholar] [CrossRef]
- Cakir, U.; Tayman, C.; Buyuktiryaki, M. Unknown Aspects of the Relationship between ABO Blood Group System and Preterm Morbidities. Arch. Argent. Pediatr. 2020, 118, e135–e142. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Bonfanti, C. Evolutionary Aspects of ABO Blood Group in Humans. Clin. Chim. Acta 2015, 444, 66–71. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Chen, J.; Cai, Y.; Deng, A.; Yang, M. Association between ABO Blood Groups and Risk of SARS-CoV-2 Pneumonia. Br. J. Haematol. 2020, 190. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Shen, Y.; Dong, J.; Wang, X.; Wang, X.; Zheng, Y.; Guo, S. Association between ABO Blood Group and Venous Thrombosis Related to the Peripherally Inserted Central Catheters in Cancer Patients. J. Vasc. Access 2020, 1129729820954721. [Google Scholar] [CrossRef]
- Murray, G.P.; Post, S.R.; Post, G.R. ABO Blood Group Is a Determinant of von Willebrand Factor Protein Levels in Human Pulmonary Endothelial Cells. J. Clin. Pathol. 2020, 73, 347–349. [Google Scholar] [CrossRef]
- Pourali, F.; Afshari, M.; Alizadeh-Navaei, R.; Javidnia, J.; Moosazadeh, M.; Hessami, A. Relationship between Blood Group and Risk of Infection and Death in COVID-19: A Live Meta-Analysis. New Microbes New Infect. 2020, 37, 100743. [Google Scholar] [CrossRef] [PubMed]
- Zalba Marcos, S.; Luisa Antelo, M.; Galbete, A.; Etayo, M.; Ongay, E.; García-Erce, J.A. Infection and Thrombosis Associated with COVID-19: Possible Role of the ABO Blood Group. Med. Clin. 2020, 155, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Hibbs, J.R.; Gallinella, G.; Anderson, S.M.; Lehman, E.D.; McCarthy, P.; Young, N.S. Resistance to Parvovirus B19 Infection Due to Lack of Virus Receptor (Erythrocyte P Antigen). N. Engl. J. Med. 1994, 330, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinidis, T.G.; Iliadi, V.; Martinis, G.; Panopoulou, M. The Usefulness of Rare Blood Group Systems in the Risk Determination for Severe COVID-19. Pathophysiology 2021, 28, 496-500. https://doi.org/10.3390/pathophysiology28040032
Konstantinidis TG, Iliadi V, Martinis G, Panopoulou M. The Usefulness of Rare Blood Group Systems in the Risk Determination for Severe COVID-19. Pathophysiology. 2021; 28(4):496-500. https://doi.org/10.3390/pathophysiology28040032
Chicago/Turabian StyleKonstantinidis, Theocharis G., Valeria Iliadi, Georges Martinis, and Maria Panopoulou. 2021. "The Usefulness of Rare Blood Group Systems in the Risk Determination for Severe COVID-19" Pathophysiology 28, no. 4: 496-500. https://doi.org/10.3390/pathophysiology28040032
APA StyleKonstantinidis, T. G., Iliadi, V., Martinis, G., & Panopoulou, M. (2021). The Usefulness of Rare Blood Group Systems in the Risk Determination for Severe COVID-19. Pathophysiology, 28(4), 496-500. https://doi.org/10.3390/pathophysiology28040032