Financial Contagion: A Tale of Three Bubbles
Abstract
:1. Introduction
2. Related Literature and Hypotheses Development
2.1. The Dot-Com Bubble
2.2. The Housing Bubble
2.3. The 2015 Chinese Bubble
2.4. Financial Contagion and Volatility Persistence
3. Data and Empirical Methods
3.1. Data and Descriptive Statistics
3.2. Log Periodic Power Law (LPPL) Model
3.3. DCC-GARCH Model
3.4. Diebold-Yilmaz Volatility Spillover Index
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Calibration of LPPL Model for Shanghai and Shenzhen Stock Indexes
1 | |
2 | Scherbina and Schlusche (2014) provide a nice survey on asset price bubbles. |
3 | Unreported Augmented Dickey-Fuller and Phillips-Perron tests of the sample returns strongly reject the null hypothesis of the presence of a unit root. |
4 | In a recent study, Akhtaruzzaman et al. (2021) investigate the spillover effects between from firms in the U.S. and firms in China and report that both U.S. and Chinese firms transmit more volatility than they receive. |
References
- Agarwal, Vikas, Y. Esar Arisoy, and Narayan Y. Naik. 2017. Volatility of aggregate volatility and hedge fund returns. Journal of Financial Economics 125: 491–510. [Google Scholar] [CrossRef]
- Akhtaruzzaman, Md, Waleed Abdel-Qader, Helmi Hammami, and Syed Shams. 2021. Is China a source of financial contagion? Finance Research Letters 38: 101393. [Google Scholar] [CrossRef]
- Bekaert, Geert, Michael Ehrmann, Marcel Fratzscher, and Arnaud Mehl. 2014. The Global Crisis and Equity Market Contagion. The Journal of Finance 69: 2597–649. [Google Scholar] [CrossRef] [Green Version]
- BenMim, Imen, and Ahmed BenSaïda. 2019. Financial contagion across major stock markets: A study during crisis episodes. The North American Journal of Economics and Finance 48: 187–201. [Google Scholar] [CrossRef]
- Brée, David S., and Nathan Lael Joseph. 2013. Testing for financial crashes using the log periodic power law model. International Review of Financial Analysis 30: 287–297. [Google Scholar]
- Case, Karl E., and Robert J. Shiller. 2003. Is there a bubble in the housing market? Brookings Papers on Economic Activity 2003: 299–362. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Min-Hsien, and Li-Min Wang. 2011. Volatility contagion: A range-based volatility approach. Journal of Econometrics 165: 175–89. [Google Scholar] [CrossRef]
- Diebold, Francis X., and Kamil Yilmaz. 2009. Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal 119: 158–71. [Google Scholar] [CrossRef] [Green Version]
- Diebold, Francis X., and Kamil Yilmaz. 2012. Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting 28: 57–66. [Google Scholar]
- Dimitriou, Dimitrios, Dimitris Kenourgios, and Theodore Simos. 2013. Global financial crisis and emerging stock market contagion: A multivariate FIAPARCH–DCC approach. International Review of Financial Analysis 30: 46–56. [Google Scholar] [CrossRef]
- Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics 20: 339–50. [Google Scholar] [CrossRef]
- Flood, Robert P., and Robert J. Hodrick. 1986. Asset Price Volatility, Bubbles, and Process Switching. The Journal of Finance 41: 831. [Google Scholar] [CrossRef]
- Forbes, Kristin J., and Roberto Rigobon. 2002. No contagion, only interdependence: Measuring stock market comovements. Journal of Finance 57: 2223–61. [Google Scholar] [CrossRef]
- Garber, Peter M. 1990. Famous first bubbles. The Journal of Economic Perspectives 4: 35–54. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Gonzalez, Jose Eduardo, Juliana Gamboa-Arbeláez, Jorge Hirs-Garzón, and Andrés Pinchao-Rosero. 2018. When Bubble Meets Bubble: Contagion in OECD Countries. The Journal of Real Estate Finance and Economics 56: 546–566. [Google Scholar] [CrossRef]
- Jin, Xiaoye, and Ximeng An. 2016. Global financial crisis and emerging stock market contagion: A volatility impulse response function approach. Research in International Business and Finance 36: 179–95. [Google Scholar] [CrossRef]
- Johansson, Anders C. 2010. China’s financial market integration with the world. Journal of Chinese Economic and Business Studies 8: 293–314. [Google Scholar] [CrossRef]
- Liberatore, Vincenzo. 2010. Computational LPPL fit to financial bubbles. arXiv arXiv:1003.2920. [Google Scholar]
- Lin, Li, Ruo En Ren, and Didier Sornette. 2014. The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals. International Review of Financial Analysis 33: 210–25. [Google Scholar] [CrossRef]
- Lucas, Robert E., Jr. 1976. Econometric policy evaluation: A critique. Carnegie-Rochester Conference Series on Public Policy 1: 19–46. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, Benoit B. 1963. The variation of certain speculative prices. Journal of Business 36: 392–417. [Google Scholar]
- Ofek, Eli, and Matthew Richardson. 2003. Dotcom mania: The rise and fall of internet stock prices. The Journal of Finance 58: 1113–37. [Google Scholar] [CrossRef] [Green Version]
- Pele, Daniel Traian. 2012. An LPPL Algorithm for estimating the critical time of a stock market bubble. Journal of Social and Economic Statistics 1: 14–22. [Google Scholar]
- Scherbina, Anna, and Bernd Schlusche. 2014. Asset price bubbles: A survey. Quantitative Finance 14: 589–604. [Google Scholar] [CrossRef]
- Shiller, Robert J. 2000. Irrational Exuberance. Princeton: Princeton University Press. [Google Scholar]
- Song, Guoxiang. 2020. The Drivers of the Great Bull Stock Market of 2015 in China: Evidence and Policy Implications. Journal of Chinese Economic and Business Studies 18: 161–81. [Google Scholar] [CrossRef]
- Sornette, Didier, Peter Cauwels, and Georgi Smilyanov. 2018. Can we use volatility to diagnose financial bubbles? lessons from 40 historical bubbles. Quantitative Finance and Economics 2: 486–590. [Google Scholar] [CrossRef]
- Wang, Gang-Jin, Chi Xie, Min Lin, and H. Eugene Stanley. 2017. Stock market contagion during the global financial crisis: A multiscale approach. Finance Research Letters 22: 163–68. [Google Scholar] [CrossRef]
- Yousaf, Imran, Shoaib Ali, and Wing-Keung Wong. 2020a. Return and Volatility Transmission between World-Leading and Latin American Stock Markets: Portfolio Implications. Journal of Risk and Financial Management 13: 148. [Google Scholar] [CrossRef]
- Zeng, Fanhua, Wei-Chiao Huang, and James Hueng. 2016. On Chinese Government’s Stock Market Rescue Efforts in 2015. ME Modern Economy 7: 411–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Qunzhi, Didier Sornette, Mehmet Balcilar, Rangan Gupta, Zeynel Abidin Ozdemir, and Hakan Yetkiner. 2016. LPPLS bubble indicators over two centuries of the S&P 500 index. Physica A: statistical Mechanics and Its Applications 458: 126–39. [Google Scholar]
Panel A: Dot-Com Bubble | ||||||||||||
Full Bubble period | Build-Up period | Bubble period | Crash period | |||||||||
S&P 500 | SSE | SZSE | S&P 500 | SSE | SZSE | S&P 500 | SSE | SZSE | S&P 500 | SSE | SZSE | |
Mean | 0.041 | 0.032 | 0.039 | 0.096 | 0.126 | 0.217 | 0.081 | 0.057 | 0.039 | −0.015 | −0.033 | −0.051 |
Median | 0.058 | 0.018 | 0.056 | 0.090 | 0.017 | 0.273 | 0.092 | 0.044 | 0.016 | 0.004 | 0.001 | 0.016 |
Std. Dev. | 1.182 | 1.924 | 2.011 | 0.691 | 2.858 | 2.892 | 1.315 | 1.810 | 1.986 | 1.271 | 1.330 | 1.395 |
Kurtosis | 3.203 | 23.632 | 17.069 | 3.232 | 18.723 | 14.614 | 3.637 | 4.208 | 4.074 | 1.656 | 6.273 | 5.775 |
Skewness | −0.066 | 0.923 | 0.307 | −0.193 | 1.187 | 0.486 | −0.294 | −0.435 | −0.572 | 0.169 | 0.667 | 0.407 |
Minimum | −7.113 | −17.905 | −18.887 | −3.131 | −17.905 | −18.887 | −7.113 | −9.246 | −10.172 | −5.047 | −6.543 | −6.817 |
Maximum | 5.574 | 26.993 | 24.904 | 3.761 | 26.993 | 24.904 | 5.402 | 8.665 | 8.682 | 5.574 | 9.401 | 9.244 |
N | 2311 | 2311 | 2311 | 523 | 523 | 523 | 741 | 741 | 741 | 1047 | 1047 | 1047 |
Panel B: Housing Bubble | ||||||||||||
Full Bubble period | Build-Up period | Crash period | ||||||||||
S&P 500 | SSE | SZSE | S&P 500 | SSE | SZSE | S&P 500 | SSE | SZSE | ||||
Mean | −0.044 | 0.046 | 0.071 | 0.031 | 0.195 | 0.216 | −0.169 | −0.202 | −0.172 | |||
Median | 0.070 | 0.137 | 0.243 | 0.083 | 0.207 | 0.308 | 0.008 | −0.126 | −0.008 | |||
Std. Dev. | 1.575 | 2.127 | 2.264 | 0.711 | 1.701 | 1.841 | 2.399 | 2.676 | 2.817 | |||
Kurtosis | 14.797 | 3.407 | 2.775 | 2.336 | 4.356 | 3.661 | 5.730 | 1.817 | 1.298 | |||
Skewness | −0.748 | −0.402 | −0.601 | −0.537 | −0.601 | −0.606 | −0.400 | −0.116 | −0.404 | |||
Minimum | −13.799 | −12.764 | −12.697 | −3.534 | −9.256 | −8.930 | −13.799 | −12.764 | −12.697 | |||
Maximum | 10.957 | 9.034 | 8.515 | 2.134 | 7.890 | 8.351 | 10.957 | 9.034 | 8.515 | |||
N | 1005 | 1005 | 1005 | 628 | 628 | 628 | 377 | 377 | 377 | |||
Panel C: 2015 Chinese Bubble | ||||||||||||
Full Bubble period | ||||||||||||
S&P 500 | SSE | SZSE | ||||||||||
Mean | 0.015 | 0.120 | 0.129 | |||||||||
Median | 0.042 | 0.179 | 0.475 | |||||||||
Std. Dev. | 0.849 | 2.123 | 2.231 | |||||||||
Kurtosis | 3.306 | 3.667 | 2.539 | |||||||||
Skewness | −0.382 | −0.977 | −1.098 | |||||||||
Minimum | −4.021 | −8.873 | −8.195 | |||||||||
Maximum | 3.829 | 6.040 | 5.259 | |||||||||
N | 327 | 327 | 327 |
Panel A: Dot-Com Bubble | ||||||||
Full Bubble period | Build-Up period | Bubble period | Crash period | |||||
S&P 500 | SSE | S&P 500 | SSE | S&P 500 | SSE | S&P 500 | SSE | |
SSE | −0.0332 | −0.1038 | −0.0452 | 0.0027 | ||||
SZSE | −0.0290 | 0.8983 | −0.1309 | 0.8253 | −0.0262 | 0.9618 | 0.0094 | 0.9759 |
Panel B: Housing Bubble | ||||||||
Full Bubble period | Build-Up period | Crash period | ||||||
S&P 500 | SSE | S&P 500 | SSE | S&P 500 | SSE | |||
SSE | 0.0495 | 0.0864 | 0.0341 | |||||
SZSE | 0.0190 | 0.9285 | 0.0680 | 0.9303 | −0.0024 | 0.9266 | ||
Panel C: 2015 Chinese Bubble | ||||||||
Full Bubble period | ||||||||
S&P 500 | SSE | |||||||
SSE | 0.2024 | |||||||
SZSE | 0.1827 | 0.8335 |
tstart | tend | tc | m | ω | ϕ | A | B | C | |
---|---|---|---|---|---|---|---|---|---|
SSE | 5 May 2014 | 15 September 2015 | 3 June 2015 | 0.941 | 7.387 | −2.106 | 8.436 | −0.004 | 0.126 |
SZSE | 5 May 2014 | 15 September 2015 | 10 June 2015 | 0.975 | 10.821 | −16.420 | 7.765 | −0.004 | 0.021 |
Panel A: Dot-Com Bubble—Full Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | α | Β | A | β |
0.0717 *** | 0.9243 *** | 0.1209 *** | 0.8898 *** | 0.1275 *** | 0.8765 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) |
Panel B: Dot-Com Bubble—Build-Up Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | α | β | A | β |
0.0354 * | 0.9529 *** | 0.1285 ** | 0.4773 *** | 0.1766 ** | 0.494 *** |
(0.069) | (0.000) | (0.033) | (0.000) | (0.011) | (0.000) |
Panel C: Dot-Com Bubble—Mid-Bubble Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | α | β | α | β |
0.0922 * | 0.7957 *** | 0.1812 ** | 0.7695 *** | 0.2082 *** | 0.7195 *** |
(0.091) | (0.000) | (0.034) | (0.000) | (0.003) | (0.000) |
Panel D: Dot-Com Bubble—Crash Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | A | β | α | β |
0.0866 *** | 0.9047 *** | 0.1538 *** | 0.8041 *** | 0.1583 *** | 0.8121 *** |
(0.000) | (0.000) | (0.001) | (0.000) | (0.000) | (0.000) |
Panel E: Housing Bubble—Full Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | A | β | α | β |
0.0971 *** | 0.8985 *** | 0.0496 *** | 0.9498 *** | 0.0522 *** | 0.9458 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) |
Panel F: Housing Bubble—Build-Up Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | A | β | α | β |
0.0485 *** | 0.8828 *** | 0.0716 *** | 0.9243 *** | 0.0717 *** | 0.9215 *** |
(0.004) | (0.000) | (0.002) | (0.000) | (0.006) | (0.000) |
Panel G: Housing Bubble—Crash Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | A | β | α | β |
0.1220 *** | 0.8750 *** | 0.0238 | 0.8791 *** | 0.0240 | 0.9476 *** |
(0.000) | (0.000) | (0.471) | (0.000) | (0.322) | (0.000) |
Panel H: 2015 Chinese Bubble—Full Period | |||||
S&P 500 | SSE | SZSE | |||
α | β | A | β | α | β |
0.2206 *** | 0.6594 *** | 0.1634 *** | 0.8548 *** | 0.1096 *** | 0.8942 *** |
(0.000) | (0.000) | (0.000) | (0.001) | (0.000) | (0.000) |
Panel A: Dot-Com Bubble-Full Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0046 *** | −0.9683 *** | −0.0002 | 0.7854 |
(0.000) | (0.000) | N/A | N/A |
Panel B: Dot-Com Bubble—Build-Up Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0126 | 0.8999 *** | 0.0147 | 0.8928 *** |
(0.344) | (0.000) | (0.390) | (0.000) |
Panel C: Dot-Com Bubble—Mid-Bubble Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
−0.0106 *** | 1.0003 *** | −0.0227 *** | 0.9161 *** |
(0.008) | (0.000) | (0.004) | (0.000) |
Panel D: Dot-Com Bubble—Crash Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
−0.0016 *** | 1.0402 *** | 0.0362 | −0.1231 |
(0.000) | (0.000) | (0.384) | (0.867) |
Panel E: Housing Bubble—Full Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0115 | 0.9498 *** | 0.0090 | 0.8650 * |
(0.326) | (0.000) | (0.664) | (0.057) |
Panel F: Housing Bubble—Build-Up Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0136 | 0.5674 | −0.0021 | 0.8499 |
(0.733) | (0.539) | (0.915) | (0.267) |
Panel G: Housing Bubble—Crash Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0373 | 0.8639 *** | 0.0496 | 0.7606 *** |
(0.262) | (0.000) | (0.299) | (0.001) |
Panel H: 2015 Chinese Bubble—Full Period | |||
S&P 500-SSE | S&P 500-SZSE | ||
a | B | a | b |
0.0732 | 0.7393 *** | 0.0277 | 0.8889 *** |
(0.121) | (0.000) | (0.347) | (0.000) |
Panel A: Dot-Com Bubble | ||||
S&P 500 | SSE | SZSE | From Others | |
S&P 500 | 99.6 | 0.4 | 0.0 | 0.4 |
SSE | 0.4 | 99.2 | 0.4 | 0.8 |
SZSE | 0.3 | 79.6 | 20.2 | 79.8 |
Contribution to others | 0.6 | 79.9 | 0.5 | 81.0 |
Contribution including own | 100.2 | 179.1 | 20.7 | 27.0% |
Panel B: Housing Bubble | ||||
S&P 500 | SSE | SZSE | From Others | |
S&P 500 | 97.9 | 2.1 | 0.0 | 2.1 |
SSE | 3.5 | 96.0 | 0.4 | 4.0 |
SZSE | 2.8 | 81.8 | 15.4 | 84.6 |
Contribution to others | 6.3 | 83.9 | 0.5 | 90.7 |
Contribution including own | 104.2 | 179.9 | 15.9 | 30.2% |
Panel C: 2015 Chinese Bubble | ||||
S&P 500 | SSE | SZSE | From Others | |
S&P 500 | 91.1 | 8.7 | 0.2 | 8.9 |
SSE | 2.5 | 95.6 | 1.9 | 4.4 |
SZSE | 4.2 | 72.8 | 22.9 | 77.1 |
Contribution to others | 6.7 | 81.5 | 2.2 | 90.5 |
Contribution including own | 97.8 | 177.1 | 25.1 | 30.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burks, N.; Fadahunsi, A.; Hibbert, A.M. Financial Contagion: A Tale of Three Bubbles. J. Risk Financial Manag. 2021, 14, 229. https://doi.org/10.3390/jrfm14050229
Burks N, Fadahunsi A, Hibbert AM. Financial Contagion: A Tale of Three Bubbles. Journal of Risk and Financial Management. 2021; 14(5):229. https://doi.org/10.3390/jrfm14050229
Chicago/Turabian StyleBurks, Nathan, Adetokunbo Fadahunsi, and Ann Marie Hibbert. 2021. "Financial Contagion: A Tale of Three Bubbles" Journal of Risk and Financial Management 14, no. 5: 229. https://doi.org/10.3390/jrfm14050229
APA StyleBurks, N., Fadahunsi, A., & Hibbert, A. M. (2021). Financial Contagion: A Tale of Three Bubbles. Journal of Risk and Financial Management, 14(5), 229. https://doi.org/10.3390/jrfm14050229