Economic Trends in the Transition into a Circular Bioeconomy
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Status of the Bioeconomy
3.2. Feedstock Supply Today
3.3. Feedstock Consumption Today
3.4. Future Feedstock Demand
3.5. Increasing Biogenic Raw Materials
3.6. General Framework Conditions
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aguilar, Alfredo, Laurent Bochereau, and Line Matthiessen. 2010. Biotechnology as the engine for the Knowledge-Based Bioeconomy. Biotechnology and Genetic Engineering Reviews 26: 371–88. Available online: https//:doiI:10.5661/bger-26-371 (accessed on 9 January 2022). [CrossRef]
- Allianz. 2021. Statement on Coal Based Business Models. Available online: https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/responsibility/documents/Allianz-Statement-coal-based-business-models.pdf (accessed on 24 November 2021).
- Armental, Maria. 2021. Beyond Meat Shares Fall after Disappointing Forecast Cites Uncertainty. The Wall Street Journal. November 10. Available online: https://www.wsj.com/articles/beyond-meat-shares-fall-after-disappointing-forecast-11636582932 (accessed on 24 November 2021).
- Azimov, Ulugbek, Victor Okoro, and Hector H. Hernandez. 2021. Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. Energies 14: 6011. [Google Scholar] [CrossRef]
- BASF. 2021. BASF Bundles Renewable Energy Activities in New Subsidiary BASF Renewable Energy GmbH. Available online: https://www.basf.com/global/en/media/news-releases/2021/11/p-21-383.html (accessed on 29 November 2021).
- Bayer, Patrick, and Michaël Aklin. 2020. The European Union Emissions Trading System Reduced CO2 Emissions Despite Low Prices. PNAS. Available online: https://www.pnas.org/content/117/16/8804 (accessed on 9 January 2022).
- Bell, John, Lino Paula, Thomas Dodd, Sziliva Németh, Christina Nanou, Voula Mega, and Paula Campos. 2018. EU Ambition to Build the World’s Leading Bioeconomy—Uncertain Times Demand Innovative and Sustainable Solutions. New Biotechnology 40A: 25–30. [Google Scholar] [CrossRef] [PubMed]
- Birner, Regina. 2018. Bioeconomy concepts. In Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy. Edited by Iris Lewandowski. Cham, Switzerland: Springer, pp. 17–38. [Google Scholar]
- Bloomberg Green. 2021. EU’s Biggest Pension Fund to Dump $17 Billion in Fossil Fuels. Available online: https://www.bloomberg.com/news/articles/2021-10-26/fossil-fuel-divestment-supported-by-investors-with-39-trillion (accessed on 24 November 2021).
- Bonny, Sarah P. F., Graham E. Gardner, David W. Pethick, and Jean-François Hocquette. 2017. Artificial Meat and the Future of the Meat Industry. Animal Production Science 57: 2216–23. [Google Scholar] [CrossRef]
- Borghese, Simone, and Massimiliano Montini. 2016. The Best (and Worst) of GHG Emission Trading Systems: Comparing the EU ETS with Its Followers. Frontiers in Energy Research 4: 2. Available online: https://www.frontiersin.org/articles/10.3389/fenrg.2016.00027/full (accessed on 31 November 2021). [CrossRef] [Green Version]
- Bos, Kyra, and Joeeta Gupta. 2019. Stranded Assets and Stranded Resources: Implications for Climate Change Mitigation and Global Sustainable Development. Energy Research & Social Science 56: 101215. [Google Scholar] [CrossRef]
- BP. 2021. Sustainable Aviation Fuel Collaboration with British Airways. Available online: https://www.bp.com/en/global/corporate/news-and-insights/reimagining-energy/bp-in-collaboration-with-ba-on-sustainable-aviation-fuel.html (accessed on 24 November 2021).
- Bushuyev Oleksandr, S., Phil De Luna, Can Thang Dinh, Ling Tao, Genevieve Saur, Jan van de Lagemaat, Shana O. Kelley, and Edward H. Sargent. 2018. What Should We Make with CO2 and How Can We Make It? Joule 2: 825–32. [Google Scholar] [CrossRef] [Green Version]
- Camia, Andrea, Nicolas Robert, Klas Jonsson, Roberto Pilli, Sara Garcia Condado, Raul Lopez Lozano, Marijn Van Der Velde, Tevecia Ronzon, Patricia Gurria Albusac, Saulius Tamosiunas, and et al. 2018. Biomass Production, Supply, Uses and Flows in the European Union: First Results from an Integrated Assessment. EUR 28993 EN. Luxembourg: Publications Office of the European Union, Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109869 (accessed on 9 January 2022).
- Camia, Andrea, Nicolas Robert, Klas Jonsson, Roberto Pilli, Sara Garcia Condado, Raul Lopez Lozano, Marijn Van Der Velde, Tevecia Ronzon, Patricia Gurria Albusac, Saulius Tamosiunas, and et al. 2019. Biomass supply and cost supply assessments. EC Joint Research Centre. Paper presented at European Technology and Innovation Platform Bioenergy 9th Stakeholder Plenary Meeting, Brussels, Belgium, November 20–21; Available online: https://etipbioenergy.eu/images/SPM9_Presentations/Day1/7_ETIP%20B%20SPM9_A.%20Camia_EC%20JRC.pdf (accessed on 9 January 2022).
- Carbon Recycling International. 2021. Projects: Emissions-to-Liquids Technology. Available online: https://www.carbonrecycling.is/projects#project-goplant (accessed on 24 November 2021).
- Carbon Tracker. 2018. $1.6 Trillion Of Investments at Risk If Fossil Fuel Firms Fail to Heed Climate Targets. Available online: https://carbontracker.org/1-6-trillion-of-investments-at-risk-if-fossil-fuel-firms-fail-to-heed-climate-targets/ (accessed on 24 November 2021).
- Carbon Trust. 2021. Briefing: What Are Scope 3 Emissions? Available online: https://www.carbontrust.com/resources/briefing-what-are-scope-3-emissions (accessed on 24 November 2021).
- CCC. 2018. Biomass in a Low-Carbon Economy. Available online: https://www.theccc.org.uk/publication/biomass-in-a-low-carbon-economy/ (accessed on 24 November 2021).
- CEFIC. 2021a. Facts and Figures of The European Chemical Industry. Available online: https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/ (accessed on 29 November 2021).
- CEFIC. 2021b. The European Chemical Industry Wants to Boost Its Bioeconomy Sector: Platform Chemicals and Polymers for Plastics as Promising Opportunities. Available online: https://cefic.org/policy-matters/innovation/bioeconomy/ (accessed on 3 January 2022).
- Chen, Rui-Xin, and Wei-Cheng Wang. 2019. The Production of Renewable Aviation Fuel from Waste Cooking Oil. Part I: Bio-Alkane Conversion through Hydro-Processing of Oil. Renewable Energy 135: 819–35. [Google Scholar] [CrossRef]
- Cheng, Feng, and Catherine E. Brewer. 2017. Producing jet Fuel from Biomass Lignin: Potential Pathways to Alkyl-Benzenes and Cycloalkanes. Renewable and Sustainable Energy Reviews 72: 673–722. [Google Scholar] [CrossRef]
- Curtis, Philip G., Christi M. Slay, Nancy L. Harris, Alexandra Tyukavina, and Matthew C. Hansen. 2018. Classifying Drivers of Global Forest Loss. Science 361: 1108–11. Available online: https://www.science.org/doi/10.1126/science.aau3445 (accessed on 24 November 2021). [CrossRef]
- Dahmen, Nicolaus, Iris Lewandowski, Susanne Zibek, and Annette Weidtmann. 2018. Integrated Lignocellulosic Value Chains in a Growing Bioeconomy: Status Quo and Perspectives. GBC-Bioenergy 11: 107–17. [Google Scholar] [CrossRef] [Green Version]
- Dean, Grace. 2021. Why Europe Is Leading the Way in Plant-Based Food Innovation. Available online: https://www.businessinsider.com/why-europe-leading-plant-based-vegan-food-innovation-2021-2 (accessed on 24 November 2021).
- Deloitte. 2019. Plant-Based Alternatives Driving Industry M&A. Available online: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-plant-based-alternatives.pdf (accessed on 24 November 2021).
- Demartini, Eugenio, Anna Gaviglio, Marco Gelati, and Daniele Cavicchioli. 2016. The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy. Energies 9: 965. [Google Scholar] [CrossRef] [Green Version]
- Demesa, Abayneh Getachew, Arto Laari, and Mika Sillanpää. 2020. Chapter 6—Value-Added Chemicals and Materials from Lignocellulosic Biomass: Carboxylic Acids and Cellulose Nanocrystals. In Advanced Water Treatment. Edited by Mika Sillanpää. Amsterdam: Elsevier, pp. 367–436. [Google Scholar] [CrossRef]
- Demichelis, Francesca, Francesco Piovano, and Silvia Fiore. 2019. Biowaste Management in Italy: Challenges and Perspectives. Sustainability 11: 4213. [Google Scholar] [CrossRef] [Green Version]
- Díaz, Sandra, Josef Settele, Eduardo S. Brondízio, Hien T. Ngo, Maximilien Guèze, John Agard, Almut Arneth, Patricia Balvanera, Kate Brauman, Stuart Butchart, and et al., eds. 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn: IPBES Secretariat, 56p, Available online: https://ipbes.net/sites/default/files/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf (accessed on 26 November 2021).
- Diestel, Sylvia, and Holger Weimar. 2014. Der Kohlenstoffgehalt in Holz- und Papierprodukten—Herleitung und Umrechnungsfaktoren. Hamburg: Thünen Institut, Available online: https://www.thuenen.de/media/publikationen/thuenen-workingpaper/ThuenenWorkingPaper_38.pdf (accessed on 24 November 2021).
- E3G. 2019. Financial Risks for Gas Investments in Europe. Available online: https://9tj4025ol53byww26jdkao0x-wpengine.netdna-ssl.com/wp-content/uploads/03_03_20_E3G_Gas_Investment_Transition_Risk.pdf (accessed on 24 November 2021).
- E4Tech, Dechema, and Nova Institute. 2019. Roadmap for the Chemical Industry in Europe towards a Bioeconomy. Available online: https://roadtobio.eu (accessed on 24 November 2021).
- E4Tech. 2018. Ramp up of Lignocellulosic Ethanol in Europe to 2030. Available online: https://www.e4tech.com/resources/127-ramp-up-of-lignocellulosic-ethanol-in-europe-to-2030.php (accessed on 24 November 2021).
- EASA. 2021. Bio-Based Aviation Fuels. Available online: https://www.easa.europa.eu/eaer/topics/sustainable-aviation-fuels/bio-based-aviation-fuels (accessed on 24 November 2021).
- EC JRC. 2019. Biomass Supply and Cost Supply Assessments. Available online: https://www.etipbioenergy.eu/images/SPM9_Presentations/Day1/7_ETIP%20B%20SPM9_A.%20Camia_EC%20JRC.pdf (accessed on 24 November 2021).
- EC JRC. 2020. Mapping and Assessment of Ecosystems and Their Services: An EU Wide Ecosystem Assessment. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC120383 (accessed on 24 November 2021).
- EC Staff Working Paper. 2011. Impact Assessment—Energy Roadmap 2050. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/sec_2011_1565_part2.pdf (accessed on 24 November 2021).
- EC. 2006. En Route to the Knowledge-Based Bioeconomy. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/Cologne_Paper.pdf (accessed on 24 November 2021).
- EC. 2018a. A sustainable Bioeconomy for Europe—Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy. Available online: https://knowledge4policy.ec.europa.eu/publication/sustainable-bioeconomy-europe-strengthening-connection-between-economy-society_en (accessed on 24 November 2021).
- EC. 2018b. Brief on Agricultural Biomass Production. Available online: Bioeconomy.agricultural_biomass_final_web.pdf (accessed on 24 November 2021).
- EC. 2018c. Land Use and Forestry Regulation for 2021–2030. Available online: https://ec.europa.eu/clima/eu-action/forests-and-agriculture/land-use-and-forestry-regulation-2021-2030_en (accessed on 24 November 2021).
- EC. 2018d. Renewable Energy Directive 2018/2001/EU. Available online: https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 24 November 2021).
- EC. 2019. The European Green Deal. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 24 November 2021).
- EC. 2020a. EU Agricultural Outlook for Markets, Income and Environment 2020–2030. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/agricultural-outlook-2020-report_en.pdf (accessed on 24 November 2021).
- EC. 2020b. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. “EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:4494870&rid=1 (accessed on 24 November 2021).
- EC. 2020c. Stepping up Europe’s 2030 Climate Ambition—Investing in a Climate-Neutral Future for the Benefit of Our People. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0562&from=en (accessed on 24 November 2021).
- EC. 2021a. Agricultural Commodity Prices—September 2021. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/commodity-price-dashboard_2021-10_en.pdf (accessed on 24 November 2021).
- EC. 2021b. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0031 (accessed on 24 November 2021).
- EC. 2021c. EU Emissions Trading System (EU ETS). Available online: https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets_en (accessed on 24 November 2021).
- EC. 2021d. Financing the Green Transition: The European Green Deal Investment Plan and Just Transition Mechanism. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_17 (accessed on 24 November 2021).
- EC. 2021e. Fit for 55: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality. Available online: https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/fit-55-delivering-eus-2030-climate-target-way-climate-neutrality (accessed on 24 November 2021).
- EC. 2021f. Four European Cities Successfully Put Circular Economy Principles into Action. Available online: https://cordis.europa.eu/article/id/429694-four-european-cities-successfully-put-circular-economy-principles-into-action (accessed on 24 November 2021).
- EC. 2021g. Proposal for a Directive of the European Parliament and of the Council Amending Directive (EU) 2018/2001 of the European Parliament and of the Council, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0557 (accessed on 24 November 2021).
- EC. 2021h. Questions and Answers—Emissions Trading—Putting a Price on Carbon. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3542 (accessed on 24 November 2021).
- ECB. 2021. A Global Accord for Sustainable Finance. Available online: https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210511~7810445372.en.html (accessed on 24 November 2021).
- EEA. 2011. Earth 2050 Global Mega Trends. Available online: https://www.eea.europa.eu/downloads/393ebda5c71c273cf41be78a42881ea7/1461319875/earth-2050-global-megatrends.pdf (accessed on 24 November 2021).
- EEA. 2013. EU Bioenergy Potential from a Resource-Efficiency Perspective. Available online: EU_bioenergy_potential_from_a_ressource-efficiency_perspective_updated.pdf (accessed on 24 November 2021).
- EEA. 2018. Primary Energy Consumption by Fuel in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/primary-energy-consumption-by-fuel-7/assessment (accessed on 24 November 2021).
- EEA. 2021. Recycling of Municipal Waste. Available online: https://www.eea.europa.eu/airs/2018/resource-efficiency-and-low-carbon-economy/recycling-of-municipal-waste (accessed on 24 November 2021).
- EIA. 2021. Carbon Dioxide Emission Factors for Coal. Available online: https://www.eia.gov/coal/production/quarterly/co2_article/co2.html (accessed on 24 November 2021).
- Electrochaea. 2021. About. Available online: https://www.electrochaea.com/about/ (accessed on 24 November 2021).
- Energy Transitions Commission. 2021. Bioresources within a Net-Zero Emissions Economy: Making a Sustainable Approach Possible (Forthcoming). Available online: https://www.energy-transitions.org/publications/bioresources-within-a-net-zero-emissions-economy/ (accessed on 24 November 2021).
- EPA. 2021. Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 24 November 2021).
- Ericsson, Karin, and Lars J. Nilsson. 2018. Climate innovations in the paper industry. Prospects for decarbonization. IMES/EESS Report Series 110: 37–147. Available online: https://portal.research.lu.se/en/publications/climate-innovations-in-the-paper-industry-prospects-for-decarboni (accessed on 24 November 2021).
- EU Publications Office. 2021. The Use of Woody Biomass for Energy Production in the EU. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC122719 (accessed on 24 November 2021).
- EU. 2018. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on waste, OJ L 150, 14.06.2018. pp. 109–40. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32018L0851 (accessed on 23 November 2021).
- European Climate Foundation. 2010. Roadmap 2050—A Practical Guide to a Prosperous, Low-Carbon Europe. Available online: https://www.roadmap2050.eu (accessed on 24 November 2021).
- Eurostat. 2015. Statistics on Slaughtering, all Species, by Country, 2014. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Statistics_on_slaughtering,_all_species,_by_country,_2014.png (accessed on 24 November 2021).
- Eurostat. 2018. Agri-Environmental Indicato—Greenhouse Gas Emissions. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agri-environmental_indicator_-_greenhouse_gas_emissions&oldid=374989 (accessed on 24 November 2021).
- Eurostat. 2020. Electricity and Heat Statistics. Eurostat—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics (accessed on 24 November 2021).
- Eurostat. 2021a. Ageing Europe—Statistics on Population Developments. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Ageing_Europe_-_statistics_on_population_developments (accessed on 24 November 2021).
- Eurostat. 2021b. Energy Statistics—An Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Primary_energy_production (accessed on 24 November 2021).
- Eurostat. 2021c. National Accounts and GDP. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=National_accounts_and_GDP#Developments_for_GDP_in_the_EU:_decline_in_2020.2C_the_first_since_2013 (accessed on 24 November 2021).
- Eurostat. 2021d. Population projections in the EU. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=People_in_the_EU_-_population_projections&oldid=497115#Population_projections (accessed on 24 November 2021).
- FAO, and UNEP. 2020. The State of the World’s Forests 2020. Available online: https://www.fao.org/documents/card/en/c/ca8642en/ (accessed on 24 November 2021).
- FAO. 2009. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 24 November 2021).
- FAO. 2021a. Forestry Production and Trade. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 24 November 2021).
- FAO. 2021b. Global Perspectives Studies—Commodity Balances, Volume. Available online: https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/ (accessed on 24 November 2021).
- FAO. 2021c. Global Perspectives Studies—Crop Yield. Available online: https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/ (accessed on 24 November 2021).
- FAO. 2021d. Maize in Human Nutrition. Available online: https://www.fao.org/3/t0395e/t0395e03.htm (accessed on 24 November 2021).
- FAO. 2021e. Wood Energy. Available online: https://www.fao.org/forestry/energy/en/ (accessed on 24 November 2021).
- FAOSTAT. 2021. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 November 2021).
- FCH. 2019. A Sustainable Pathway for the European Energy Transition. Available online: https://www.fch.europa.eu/sites/default/files/Hydrogen%20Roadmap%20Europe_Report.pdf (accessed on 24 November 2021).
- Fertilizers Europe. 2019. Carbon Footprinting in the Fertilizer Industry as a Means to Reach Climate Ambitions. Available online: https://www.fertilizerseurope.com/carbon-footprinting-in-the-fertilizer-industry-as-a-means-to-reach-climate-ambitions/ (accessed on 24 November 2021).
- Fleischindustrie. 2021. Alternative Proteins—Tönnies Expands in the Veggie Market. Available online: https://english.fleischwirtschaft.de/economy/news/Alternative-Proteins-Toennies-expands-in-the-veggie-market-44066 (accessed on 24 November 2021).
- Frankfurt School-UNEP Centre, and BNEF. 2019. Global Trends in Renewable Energy Investment 2019. Available online: https://www.unep.org/resources/report/global-trends-renewable-energy-investment-2019 (accessed on 24 November 2021).
- Frieden, Florian. 2021. Carbon Capture and Utilization—A New Building Block for Circular Economy? Journal of Business Chemistry 18: 80–95. Available online: https://repositorium.uni-muenster.de/document/miami/dd290f40-dd1f-4339-9125-80095a8e19db/jbc_2021_18_3_80-95.pdf (accessed on 3 January 2022).
- Friedrichs, Steffi. 2018. Trend-Analysis of Science, Technology and Innovation Policies for BNCTs, OECD Science, Technology and Industry Working Papers. No. 2018/08. Paris: OECD Publishing, Available online: https://www.researchgate.net/publication/329963755_Trend-analysis_of_science_technology_and_innovation_policies_for_BNCTs (accessed on 3 January 2022).
- Gardiner B. 2021. Inside the EU’s Waste-to-Energy Battle. Greenbiz. Available online: https://www.greenbiz.com/article/inside-eus-waste-energy-battle (accessed on 24 November 2021).
- Grasso, Alessandra C., Yung Hung, Margarete R. Olthof, Ingeborg A. Brouwer, and Wim Verbeke. 2021. Understanding meat consumption in later life: A segmentation of older consumers in the EU. Food Quality and Preference 93: 104242. [Google Scholar] [CrossRef]
- Greenpeace. 2021. Eating Less Meat, More Plants Helps the Environment. Available online: https://www.greenpeace.org/usa/sustainable-agriculture/eco-farming/eat-more-plants/ (accessed on 24 November 2021).
- Gurría Albusac, Patricia, Tevecia Ronzon, Saulius Tamošiūnas, Raul López-Lozano, Sara García-Condado, Jordi Garcia Guillen, Noemie Cazzaniga, Klas Jonsson, Manjola Banja, Gianluca Fiore, and et al. 2017. Biomass flows in the European Union the Sankey Biomass Diagram—Towards a Cross-Set Integration of Biomass. Joint Research Centre (JRC) Publications Repository. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC106502 (accessed on 24 November 2021).
- Hepburn, Cameron, Ella Adlen, John Beddington, Emily A. Carter, Sabine Fuss, Nial Mac Dowell, Jan C. Minx, Pete Smith, and Charlotte K. Williams. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575: 87–97. [Google Scholar] [CrossRef] [Green Version]
- Herrero, Mario, Petr Havlík, Hugo Valin, An Maria Omer Notenbaert, Mariana C. Rufino, Philip K. Thornton, Michael Blümmel, Franz Weiss, Delia Grace, and Michael Obersteiner. 2013. Biomass Use, Production, Feed Efficiencies, and Greenhouse Gas Emissions from Global Livestock Systems. Proceedings of the National Academy of Sciences of the United States of America 110: 20888–93. Available online: https://www.researchgate.net/publication/259350653_Biomass_use_production_feed_efficiencies_and_greenhouse_gas_emissions_from_global_livestock_systems (accessed on 3 January 2022). [CrossRef] [Green Version]
- Hockenos, Paul. 2021. Waste to Energy—Controversial Power Generation by Incineration. Clean Energy Wire. Available online: https://www.cleanenergywire.org/factsheets/waste-energy-controversial-power-generation-incineration (accessed on 3 January 2022).
- Hocquette, Jean Francois. 2016. Is In Vitro Meat the Solution for the Future? Meat Science 120. Available online: https://pubmed.ncbi.nlm.nih.gov/27211873/ (accessed on 3 January 2022).
- Hoefnagels, Ric. 2018. EU Lignocellulosic Feedstock Availability and Potential for Advanced Biofuels and Connected Challenges. ADVANCEFUEL Stakeholder Workshop Gothenburg, September 2018. Available online: http://www.advancefuel.eu/contents/files/advancefuel-workshop-gothenburg-20sept18-feedstock-supply-and-readiness.pdf (accessed on 24 November 2021).
- Hou, Yong, Zhaohai Bai, J. P. Lesschen, I. G. Staritsky, N. Sikirica, Lin Ma, G. L. Velthof, and Oene Oenema. 2016. Feed Use and Nitrogen Excretion of Livestock in EU-27. Agriculture, Ecosystems & Environment 218: 232–44. Available online: https://research.wur.nl/en/publications/feed-use-and-nitrogen-excretion-of-livestock-in-eu-27 (accessed on 3 January 2022).
- Hoxha, Antione, and Bjarne Christensen. 2018. The Carbon Footprint of Fertiliser Production: Regional Reference Values. Proceedings 805. Prague: International Fertiliser Society. Available online: https://www.fertilizerseurope.com/wp-content/uploads/2020/01/The-carbon-footprint-of-fertilizer-production_Regional-reference-values.pdf (accessed on 24 November 2021).
- IAEA. 2021. IAEA Increases Projections for Nuclear Power Use in 2050. Available online: https://www.iaea.org/newscenter/pressreleases/iaea-increases-projections-for-nuclear-power-use-in-2050 (accessed on 24 November 2021).
- IEA, Dechema, and ICCA. 2013. Technology Roadmap Energy and GHG Reductions in the Chemical Industry via Catalytic Processes. Dechema Frankfurt. Available online: https://dechema.de/industrialcatalysis-path-123212,124930,20051805.html (accessed on 29 November 2021).
- IEA. 2017. Energy Technology Perspectives 2017. Available online: https://www.iea.org/reports/energy-technology-perspectives-2017 (accessed on 9 January 2022).
- IEA. 2020. Global Average Levelised Cost of Hydrogen Production by Energy Source and Technology, 2019 and 2050. Available online: https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 (accessed on 24 November 2021).
- Ineratec. 2021. Launch of the World’s Largest Power-to-Liquid Pilot Plant. Available online: https://ineratec.de/en/launch-of-the-worlds-largest-power-to-liquid-pilot-plant/ (accessed on 24 November 2021).
- Innova Market Insight. 2021. Powering Up on Plant Protein. Available online: https://www.innovamarketinsights.com/press-release/powering-up-on-plant-protein/ (accessed on 24 November 2021).
- Ionescu, Luminița. 2020. The Economics of the Carbon Tax: Environmental Performance, Sustainable Energy, and Green Financial Behavior. Geopolitics, History, and International Relations 12: 101–7. [Google Scholar] [CrossRef]
- Ionescu, Luminița. 2021a. Corporate Environmental Performance, Climate Change Mitigation, and Green Innovation Behavior in Sustainable Finance. Economics, Management, and Financial Markets 16: 94–106. [Google Scholar] [CrossRef]
- Ionescu, Luminița. 2021b. Transitioning to a Low-Carbon Economy: Green Financial Behavior, Climate Change Mitigation, and Environmental Energy Sustainability. Geopolitics, History & International Relations 13: 86–96. [Google Scholar] [CrossRef]
- IRENA, and EC. 2018. Renewable Energy Prospects for the European Union. Available online: https://www.irena.org/publications/2018/Feb/Renewable-energy-prospects-for-the-EU (accessed on 24 November 2021).
- IRENA. 2014. REmap 2030. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/IRENA_REmap_Report_June_2014.pdf (accessed on 24 November 2021).
- IRENA. 2020. Green Hydrogen: A Guide to Policy Making. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf (accessed on 24 November 2021).
- Isikgor, Furkan H., and C. Remzi Becer. 2015. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polymer Chemistry 6: 4497–4559. Available online: https://pubs.rsc.org/en/content/articlelanding/2015/py/c5py00263j (accessed on 24 November 2021). [CrossRef] [Green Version]
- Kähler, Ferdinand, Michale Carus, Olaf Porc, and Christopher vom Berg C. 2021. Turning off the Tap for Fossil Carbon—Future Prospects for a Global Chemical and Derived Material Sector Based on Renewable Carbon. Renewable Carbon, Knapsack. Available online: https://renewable-carbon.eu/publications/product/turning-off-the-tap-for-fossil-carbon-future-prospects-for-a-global-chemical-and-derived-material-sector-based-on-renewable-carbon/ (accessed on 24 November 2021).
- Kardung, Maximilain, Kutay Cingiz, Ortwin Costenoble, Roel Delahaye, Wim Heijman, Marko Lovrić, Myrna van Leeuwen, Robert M’Barek, Hans van Meijl, Stephan Piotrowski, and et al. 2021. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 13: 413. [Google Scholar] [CrossRef]
- Kätelhön, Arne, Raoul Meys, Sarah Deutz, Sangwon Suh, and André Bardow. 2019. Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. PNAS 116: 11187–94. Available online: https://www.pnas.org/content/116/23/11187 (accessed on 24 November 2021).
- Kearney. 2019. How Will Cultured Meat and Meat Alternatives Disrupt the Agricultural and Food Industry. Available online: https://www.kearney.com/consumer-retail/article?/a/how-will-cultured-meat-and-meat-alternatives-disrupt-the-agricultural-and-food-industry (accessed on 24 November 2021).
- Kircher, Manfred. 2018. Implementing the Bioeconomy in a Densely Populated and Industrialized Country. Advances in Industrial Biotechnology 1: 003. Available online: http://www.heraldopenaccess.us/fulltext/Advances-in-Industrial-Biotechnology/Implementing-the-Bioeconomy-in-a-Densily-Populated-and%20Industrialized-Country.php (accessed on 24 November 2021). [CrossRef]
- Kircher, Manfred. 2019. Bioeconomy: Markets, Implications, and Investment Opportunities. Economies 7: 73. [Google Scholar] [CrossRef] [Green Version]
- Kircher, Manfred. 2021a. On the way to a circular bioeconomy. Queesland’s Bioeconomy Forum, August 25. [Google Scholar]
- Kircher, Manfred. 2021b. The Framework Conditions Must be Aligned to the Requirements of the Bioeconomy. Bioeconomy Journal 11: 10003. [Google Scholar] [CrossRef]
- Kirschke, Dieter, Astrid Häger, and Julia Christiane Schmid. 2021. New Trends and Drivers for Agricultural Land Use in Germany. In Sustainable Land Management in a European Context. Edited by Thomas Weith, Tim Barkmann, Nadin Gaasch, Sebastian Rogga, Christian Strauß and Jana Zscheischler. Human-Environment Interactions 8. Cham: Springer. [Google Scholar] [CrossRef]
- Kizha, Anil Raj. 2008. Opportunities and Challenges Associated with Development of Wood Energy Production in Lousinana. Ph.D. thesis, Lousiana State University, Baton Rouge, LA, USA. Available online: https://www.researchgate.net/publication/323174924_opportunities_and_challenges_associated_with_development_of_wood_biomass_energy_production_in_louisiana (accessed on 25 November 2021).
- Knudsen, Marie Trydeman, John E. Hermansen, and Line Beck Thostrup. 2015. Mapping Sustainability Criteria for the Bioeconomy. Tjele: Aarhus University, Department of Agroecology, Available online: https://www.scar-swg-sbgb.eu/lw_resource/datapool/_items/item_25/mapping_final_20_10_2015.pdf (accessed on 25 November 2021).
- Korhonen, Jouni, Antero Honkasalo, and Jyri Seppälä. 2018. Circular Economy: The Concept and its Limitations. Ecological Economics 143: 37–46. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0921800916300325 (accessed on 25 November 2021). [CrossRef]
- Kumar, Pavan, M. K. Chatli, Nitin Mehta, Parminder Singh, O. P. Malav, and Akhilesh K. Verma. 2017. Meat Analogues: Health Promising Sustainable Meat Substitutes. Food Science and Nutrition 57: 923–32. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Pavan, Neelesh Sharma, Shubham Sharma, Nitin Mehta, Akhilesh Kumar Verma, S. Chemmalar, and Asis Qurni Sazili. 2021. In-vitro meat: A promising solution for sustainability of meat sector. Journal of Animal Science and Technology 63: 693–724. [Google Scholar] [CrossRef]
- Kutay, Cingiz, Hugo Gonzalez-Hermoso, Wim Heijman, and Justus H. H. Wesseler. 2021. A Cross-Country Measurement of the EU Bioeconomy: An Input–Output Approach. Sustainability 13: 3033. [Google Scholar] [CrossRef]
- Langanke, Jens, Aurel Wolf, Jorg Hofmann, Katrin Böhm, Muhammad A. Subhani, Thomas E. Müller, Walter Leitner, and Christoph Gürtler. 2014. Carbon dioxide (CO2) as Sustainable Feedstock for Polyurethane Production. Green Chemistry 16: 1865–70. Available online: https://pubs.rsc.org/en/content/articlelanding/2014/gc/c3gc41788c (accessed on 25 November 2021). [CrossRef]
- Lanzatech. 2021. Available online: https://www.lanzatech.com (accessed on 25 November 2021).
- Laurens, Lieve M. L. 2017. State of Technology Review—Algae Bioenergy. Available online: https://www.ieabioenergy.com/wp-content/uploads/2017/02/IEA-Bioenergy-Algae-report-update-Final-template-20170131.pdf (accessed on 25 November 2021).
- Li, Yin, Christopher P. Alaimo, Minji Kim, Norman Y. Kado, Joshua Peppers, Jian Xue, Chao Wan, Peter G. Green, Ruihong Zhang, Brian M. Jenkins, and et al. 2019. Composition and Toxicity of Biogas Produced from Different Feedstocks in California. Environmental Science & Technology 53: 11569–79. [Google Scholar] [CrossRef]
- Lufthansa. 2021. Sustainable Aviation Fuel. Available online: https://www.lufthansagroup.com/en/themes/sustainable-aviation-fuel.html (accessed on 25 November 2021).
- Madau, Fabio A., Brunella Arru, Roberto Furesi, and Pietro Pulina. 2020. Insect farming for feed and food production from a circular business model perspective. Sustainability 12: 5418. [Google Scholar] [CrossRef]
- Mandley, Steven J., Vassilis Daioglou, H. Martin Junginger, Detlef P. van Vuuren, and Birka Wicke. 2020. EU bioenergy development to 2050. Renewable and Sustainable Energy Reviews 127: 109858. [Google Scholar] [CrossRef]
- Material Economics. 2021. EU Biomass Use in a Net-Zero Economy—A Course Correction for EU Biomass. Available online: https://www.climate-kic.org/wp-content/uploads/2021/06/material-economics-eu-biomass-use-in-a-net-zero-economy-online-version.pdf (accessed on 25 November 2021).
- McKinsey and Company. 2020. Net-Zero Europe—Decarbonization Pathways and Socioeconomic Implications. Available online: https://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/how%20the%20european%20union%20could%20achieve%20net%20zero%20emissions%20at%20net%20zero%20cost/net-zero-europe-vf.pdf (accessed on 25 November 2021).
- Observator Finansowy. 2018. Arable Land in Europe is Becoming Increasingly Expensive. Available online: https://www.obserwatorfinansowy.pl/in-english/arable-land-in-europe-is-becoming-increasingly-expensive/ (accessed on 25 November 2021).
- OECD. 2002. Consensus Document on Compositional Considerations for New Varieties of Sugar Beet: Key Food and Feed Nutrients and Anti Nutrients. Available online: https://www.oecd.org/env/ehs/biotrack/46815157.pdf (accessed on 25 November 2021).
- OECD. 2009. The Bioeconomy to 2030: Designing a Policy Agenda. Main Finding and Policy Conclusions. Available online: https://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/thebioeconomyto2030designingapolicyagenda.htm (accessed on 25 November 2021).
- OECD. 2021. Effective Carbon Rates 2021: Pricing Carbon Emissions through Taxes and Emissions Trading. Paris: OECD Publishing. [Google Scholar] [CrossRef]
- Paulus, Jutta, and Sven Giegold. 2020. Action Plan for the Green Transition of the Chemical Industry. Available online: https://www.jutta-paulus.de/en/actionplangreenchemistry (accessed on 25 November 2021).
- Pérez-Fortes, M., A. Bocin-Dumitriu, and E. Tzimas. 2014. CO2 Utilization Pathways: Techno-Economic Assessment and Market Opportunities. Energy Procedia 63: 7968–75. [Google Scholar] [CrossRef]
- Pflugmann, Fridolin, and Nicola De Blasio. 2020. The Geopolitics of Renewable Hydrogen in Low-Carbon Energy Markets. Geopolitics History and International Relations 12: 2374–4383. [Google Scholar] [CrossRef]
- pig333. 2021. Variability of the Chemical Composition and Nutritional Value of Soybean Meal. Available online: https://www.pig333.com/articles/chemical-composition-and-nutritional-value-of-soybean-meal_14864/ (accessed on 25 November 2021).
- Piotrowski, Stephan, Roland Essel, Michael Carus, Lara Dammer, and Linda Engel. 2015. Schlussbericht zum Vorhaben Nachhaltig nutzbare Potential für Biokraftstoffe in Nutzungskonkurrenz zur Lebens- und Futtermittelproduktion, Bioenergie sowie zur stofflichen Nutzung in Deutschland, Europa und der Welt. Knapsack: Nova-Institut für politische und ökologische Innovation GmbH. [Google Scholar]
- Polaris Market Research. 2018. Global Amino Acids. Available online: Markethttps://www.polarismarketresearch.com/industry-analysis/amino-acids-markethttps://www.polarismarketresearch.com/industry-analysis/amino-acids-market (accessed on 25 November 2021).
- Powell, Nick, Nikolas Hill, Judith Bates, Nathaniel Bottrell, Marius Biedka, Ben White, Tom Pine, Sarah Carter, Jane Patterson, and Selahattin Yucel. 2018. Impact Analysis of Mass EV Adoption and Low Carbon Intensity Fuels Scenarios. Concawe. Available online: https://www.concawe.eu/wp-content/uploads/RD18-001538-4-Q015713-Mass-EV-Adoption-and-Low-Carbon-Fuels-Scenarios.pdf (accessed on 25 November 2021).
- Pratchett, Liam. 2021. Europe’s Vegan Market Grew by 49% in 2 Years. Available online: https://www.livekindly.co/vegan-market-europe-growth/ (accessed on 25 November 2021).
- Raschka, Achim, and Michael Carus. 2017. Industrial Material Use of Biomass. Basic Data for Germany, Europe and the World. Available online: 12-02-17-Industrial-Material-Use-of-Biomass-nova.pdf (accessed on 25 November 2021).
- Rastogi, Nitank, and M. K. Trivedi. 2016. PESTLE Technique—A Tool to Identify External Risks in Construction Projects. IRJET 3: 384–88. Available online: https://www.irjet.net/archives/V3/i1/IRJET-V3I165.pdf (accessed on 28 December 2021).
- Renewable Carbon. 2020. Value of the EU Bioeconomy—The Latest Figures. Available online: https://renewable-carbon.eu/news/value-of-the-eu-bioeconomy-the-latest-figures/ (accessed on 25 November 2021).
- Reuter, Ryan, Deke Alkire, Alison Sunstrum, Billy Cook, and John Blanton Jr. 2013. Feed Efficiency and How It’s Measured. The Samuel Roberts Noble Foundation. Available online: https://www.noble.org/globalassets/docs/ag/pubs/livestock/nf-as-13-01.pdf (accessed on 25 November 2021).
- Ritchie, Hannah, and Max Roser. 2019. Meat and Dairy Production. Our World in Data. Available online: https://ourworldindata.org/meat-production (accessed on 25 November 2021).
- Rockström, Johan, Will Steffen, Kevin Noone, Åsa Persson, F. Stuart Chapin III, Eric F. Lambin, Timothy M. Lenton, Marten Scheffer, Carl Folke, Hans Joachim Schellnhuber, and et al. 2009. A safe operating space for humanity. Nature 461: 472–475. [Google Scholar] [CrossRef]
- Rogelj, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, and et al. 2018. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Edited by V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock and et al. Available online: https://www.ipcc.ch/sr15/chapter/chapter-2/ (accessed on 25 November 2021).
- Ronzon, Tévécia, Stephan Piotrowski, Saulius Tamosiunas, Lara Dammer, Michael Carus, and Robert M’Barek. 2020. Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU. Sustainability 12: 4507. [Google Scholar] [CrossRef]
- Scarlat, Nicolae, Fernando Fahl, and Jean Francois Dallemand. 2019a. Status and Opportunities for Energy Recovery from Municipal Solid Waste in Europe. Waste and Biomass Valorization 10: 2425–44. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, Nicolae, Jean Francois Dallemand, Nigel Taylor, and Manjola Banja. 2019b. Brief on biomass for energy in the European Union. In Energy and Transport. Edited by J. Sanchez Lopez and M. Avraamides. Luxembourg: Publications Office of the European Union. [Google Scholar] [CrossRef]
- Schipfer, Fabian, Lukas Kranzl, David Leclère, Leduc Sylvain, Nicklas Forsell, and Hugo Valin. 2017. Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand. Biomass and Bioenergy 96: 19–27. [Google Scholar] [CrossRef]
- Sharma, Shefali. 2021. Companies: Dominating the Market from Farm to Display Case. Heinrich Böll Stiftung Brussels. Available online: https://eu.boell.org/en/2021/09/07/companies-dominating-market-farm-display-case (accessed on 3 January 2022).
- Slowfood. 2020. Five Good Reasons to Reduce Meat Consumption. Available online: https://www.slowfood.com/five-good-reasons-to-reduce-meat-consumption/ (accessed on 26 November 2021).
- Speight, G. J. 1999. The Chemistry and Technology of Petroleum, 3rd ed. New York: Marcel Dekker, pp. 215–16. ISBN 978-0-8247-0217-5. [Google Scholar]
- Statista. 2021a. Global Gross Domestic Product (GDP) at Current Prices from 1985 to 2026. Available online: https://www.statista.com/statistics/268750/global-gross-domestic-product-gdp/ (accessed on 26 January 2021).
- Statista. 2021b. Prognose zur Rohstoffbasis der Chemieindustrie in Deutschland in den Jahren 2020 und 2050. Available online: https://de.statista.com/statistik/daten/studie/1080836/umfrage/prognose-zur-rohstoffbasis-der-chemieindustrie-in-deutschland/ (accessed on 29 November 2021).
- Statista. 2021c. Share of Young Adults Who are Vegetarian or Vegan in Selected European Countries in 2021. Available online: https://www.statista.com/statistics/768475/vegetarianism-and-veganism-among-young-adults-in-selected-european-countries/ (accessed on 26 November 2021).
- Strayer, David, Mary Power, William F. Fagan, S. T. A. Pickett, and Jayne Belang. 2009. A Classification of Ecological Boundaries. BioScience 53: 723–29. Available online: https://www.researchgate.net/publication/232683519_A_Classification_of_Ecological_Boundaries (accessed on 26 November 2021). [CrossRef] [Green Version]
- Terlouw, Wouter, Daan Peters, Juriaan van Tilburg, Matthias Schimmel, Tom Berg, Jan Cihlar, Goher Ur Rehman Mir, Maarten Staats, Ainhoa Villar Lejaretta, Maud Buseman, and et al. 2019. Gas for Climate. The Optimal Role for Gas in a Net Zero Emissions Energy System. Utrecht: Navigant Netherlands B. V., Available online: https://gasforclimate2050.eu/wp-content/uploads/2020/03/Navigant-Gas-for-Climate-The-optimal-role-for-gas-in-a-net-zero-emissions-energy-system-March-2019.pdf (accessed on 26 November 2021).
- Tian, Renqu, Zisheng Yang, and Quinglong Shao. 2020. China’s Arable Land Investment in the “Belt and Road” Region: An Empirical Study of Overseas Arable Land Resources. Sustainability 12: 97. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, J., D. Bieliński, M. Binczarski, J. Berlowska, P. Dziugan, J. Piotrowski, A. Stanishevskye, and I. A. Witońska. 2018. Products of Sugar Beet Processing as Raw Materials for Chemicals and Biodegradable Polymers. RSC Advances 6: 3161–77. [Google Scholar] [CrossRef] [Green Version]
- Trading Economics. 2021. EU Carbon Permits. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 26 November 2021).
- Trinks, Arjan, Machiel Mulder, and Bert Scholtens. 2020. An Efficiency Perspective on Carbon Emissions and Financial Performance. Ecological Economics 175: 106632. [Google Scholar] [CrossRef]
- UBA. 2016. CO2 Emission Factors for Fossil Fuels. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1968/publikationen/co2_emission_factors_for_fossil_fuels_correction.pdf (accessed on 26 November 2021).
- UN. 2015. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 26 November 2021).
- UN. 2021. Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement, Third Session, Glasgow, October 31–November 12. Available online: https://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf (accessed on 26 November 2021).
- van Dijk, Michiel, Tom Morley, Marie Luise Rau, and Yashar Saghai. 2021. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat Food 2: 494–501. [Google Scholar] [CrossRef]
- Vialatte, Aude, Cecile Barnaud, Julien Blanco, Annie Ouin, Jean-Philippe Choisis, Emilie Andrieu, David Sheeren, Sylvie Ladet, Marc Deconchat, Floriane Clément, and et al. 2019. A Conceptual Framework for the Governance of Multiple Ecosystem Services in Agricultural Landscapes. Landscape Ecology 34: 1653–73. [Google Scholar] [CrossRef]
- White House. 2012. National Bioeconomy Blueprint; Washington, DC: White House. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_april_2012.pdf (accessed on 26 November 2021).
- Williams, Peter J. le B., and Lieve M. L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environmental Science 3: 554–90. Available online: https://pubs.rsc.org/en/content/articlelanding/2010/ee/b924978h (accessed on 26 November 2021).
- Willis, John, and Paul Spence. 2021. Fossil Fuel Free Investing. New York: Sustainable Insight Capital Management, Available online: https://www.sicm.com/docs/FFFI-Booklet.pdf (accessed on 26 November 2021).
- Wirsenius, Stefan, Christian Azar, and Göran Berndes. 2010. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems 103: 621–38. [Google Scholar] [CrossRef]
- Xu, Yixiang, Loren Isom, and Milford A. Hanna. 2010. Adding Value to Carbon Dioxide from Ethanol Fermentations. Bioresource Technology 101: 3311–19. [Google Scholar] [CrossRef]
- Yin, Robert K. 2016. Qualitative Research from Start to Finish. New York and London: The Guilford Press. [Google Scholar]
- Yousuf, Abu, Filomena Sannino, and Domenico Pirozzi. 2020. Fundamentals of lignocellulosic biomass—Chapter 1. In Lignocellulosic Biomass to Liquid Biofuels. Amsterdam: Elsevier. [Google Scholar]
- Yu, Ai-Qun, Nina Kurniasih Pratomo Juwono, Susanna Su Jan Leong, and Matthew Wook Chang. 2014. Production of fatty acid-derived valuable chemicals in synthetic microbes. Frontiers in Bioengineering and Biotechnology 2: 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Iris K. M., Huihui Chen, Felix Abeln, Hadiza Auta, Jiajun Fan, Vitalj L. Budarin, James H. Clark, Sophie Parsons, Christopher J. Chuck, Shisheng Zhang, and et al. 2021. Chemicals from Lignocellulosic Biomass: A Critical Comparison between Biochemical, Microwave and Thermochemical Conversion Methods. Critical Reviews in Environmental Science and Technology 51: 1479–532. [Google Scholar] [CrossRef]
- ZEP. 2021. CCS/CCU Projects. Available online: https://zeroemissionsplatform.eu/about-ccs-ccu/css-ccu-projects/ (accessed on 21 November 2021).
Sector | Employment | Value Added | ||
---|---|---|---|---|
(Million) | (Billion EUR) | Share of Total (%) | (Million EUR Per Workplace) | |
Agriculture | 9.3 | 189 | 31 | 20 |
Forestry | 0.5 | 25 | 4 | 50 |
Fishing, agriculture | 0.2 | 7 | 1 | 35 |
Food, beverages and other agro-manufacturing | 4.4 | 215 | 35 | 49 |
Bio-based textiles | 0.7 | 21 | 3 | 30 |
Wood products and furniture | 1.4 | 47 | 8 | 34 |
Paper | 0.6 | 42 | 7 | 70 |
Bio-based chemicals and pharmaceuticals, plastics and rubber | 0.4 | 60 | 10 | 150 |
Liquid biofuels | 0.02 | 3 | 1 | 150 |
Bioelectricity | 0.02 | 4 | 1 | 200 |
Total | 17.5 | 614 | 100 |
Traditional Bioeconomy | Industrial Bioeconomy | |||||
---|---|---|---|---|---|---|
Agro-Industry, Forestry, Fishery, Food, Beverages, Feed, Paper, Wood Processing | Textiles | Pharma-Ceuticals | Energy: Heat | Energy: Fuel | Energy: Power | Chemicals, Plastics |
100% | 50% | 30% | 16% | 6% | 6% | 4% |
Agriculture | Forestry | Fishery | Import | Total |
---|---|---|---|---|
956 | 280 | <10 | 67 | 1313 |
Wood Type | Volatile | Ash | Lignocellulose | ||
---|---|---|---|---|---|
Lignin | Cellulose | Hemicellulose | |||
Softwood | 0–5 | 5 | 25–35 | 40–45 | 25–28 |
Hardwood | 0–5 | 1 | 15–25 | 40–50 | 25–40 |
Pine | 0.7 | 0.5 | 34.5 | 40.4 | 24.9 |
Poplar | 1 | 2.1 | 25.6 | 41.3 | 32.9 |
Crop Group | Crop | Protein | Sugar | Starch | Lipids | Other |
---|---|---|---|---|---|---|
Oil crop | Soy bean | 37% | 6% | 0% | 20% | 37% |
Sugar crop | Sugar beet | 6% | 67% | 0% | <1% | 27% |
Starch crop | Maize | 11% | <1% | 75% | 10% | 4% |
Sugar and Starch Crop | Oil Crop | Crops for Material Utilization | Crops for Energetic Utilization | Wood | Total | |
---|---|---|---|---|---|---|
Million Tones (Mt) | ||||||
Total | 435.49 | 37.03 | 1.02 | 0.19 | 194 | 668.14 |
Share of total | 65.2% | 5.5% | 0.15% | 0.03% | 29.0% | 100% |
Sugar and Starch Crop | Oil Crop | Crops for Material Utilization | Crops for Energetic Utilization | Wood | Total | |
---|---|---|---|---|---|---|
Million Tones (Mt) | ||||||
Total | 341.93 | 90.21 | 0.16 | 0 | 29.6 | 461.9 |
Share of total | 74.0% | 19.5% | 0.03% | 0% | 6.4% | 100% |
Biomass Type | Sugar and Starch Crop | Oil Crop | Crops for Material Utilization | Crops for Energetic Utilization | Wood | Total |
---|---|---|---|---|---|---|
Million Tones (Mt) | ||||||
Economic biomass | 206.85 | 17.59 | 1.13 | 0.09 | 114.5 | 340.16 |
Residual biomass | 162.42 | 42.86 | 0.077 | 0 | 15.2 | 220.55 |
Sum | 369.27 | 60.45 | 2.21 | 0.09 | 129.7 | 561.71 |
Share | 65.7% | 10.8% | 0.4% | 0.02% | 23.1% | 100% |
Current Biomass (EJ) | ||||||
---|---|---|---|---|---|---|
Agricultural Biomass (Crops, Residues, Grazed Biomass; Without Residues Left on Field) | Forest Wood Incl. Residues | Industrial Byproducts | Paper, Wood, Other Waste | Net Biomass Trade | Agricultural Residues Left on Field | |
14.5 | 5.4 | 1.8 | 1.4 | 0.4 | 5.4 | |
Total | 23.5 | 5.4 | ||||
Share | 61.7% | 23,0% | 7.7% | 5.9% | 1.7% |
Source | Fossil | Renewable Energies | Total | ||||
---|---|---|---|---|---|---|---|
Energy and Carbon Content | Mineral Oil, Petroleum Products | Natural Gas | Solid Fossil Fuels | Biofuel * | Other | Nuclear Energy | |
Oil equivalent (Mt) | 582.0 | 398.4 | 228.4 | 233.5 | 155.7 | 210.7 | 1808.7 |
Carbon (Mt) | 488.9 | 298.8 | 171.3 | 84.1 | 1043.1 | ||
Share of carbon | 91.9% | 8.1% | |||||
(EJ) | 18.5 | 12.6 | 7.2 | 7.4 | 4.9 | 6.6 | 57.2 |
Share of EJ | 67.0% | 21.5% | 11.5 | 100% |
Type of Biomass | World | EU | |||
---|---|---|---|---|---|
[Mt] | Share | (Mt) | Share | ||
Agrobiomass | 4190 | 40% | 82% | 700–1000 | 77% |
Pasture biomass | 3700 | 31% | |||
Crop byproducts | 1380 | 12% | |||
Wood | 2120 | 18% | 18% | 200–300 | 23% |
Total (Mt) | 11,390 | 900–1300 | |||
Total (EJ) * | 207 | 16–23 |
Food and Feed | Industrial Use | Total | |||
---|---|---|---|---|---|
Animal Feed and Bedding | Plant-Based Food | Material Use | Bioenergy | ||
Biomass (Mt) | 520 | 110 | 290 | 280 | 1210.0 |
Share | 43% | 9% | 24% | 23% | |
53% | 47% | 100% |
Application | Food and Feed | Industrial Utilization | Sum | |
---|---|---|---|---|
Energy Use | Material Use | |||
Today’s Consumption | ||||
Animal Feed | 10.6 | / | / | 12.9 |
Plant-based food | 2.3 | / | / | |
Heating | / | 2.8 | / | 6.3 |
Power | / | 1.6 | / | |
Industry | / | 1.0 | / | |
Road transport | / | 0.7 | / | |
Other energy | / | 0.2 | / | |
Wood products | / | / | 2.8 | 4.1 |
Pulp production | / | / | 1.3 | |
Share | 55.4% | 27.0% | 17.6% | 23.3 |
Bioenergies | Biomaterials | |||
---|---|---|---|---|
Road Transport | Power | Heating | Industrial Processing | Materials |
2500% | 470% | 190% | 150% | 10–20% |
Feedstock Sources | Current Supply | Demand in 2050 | ||
---|---|---|---|---|
Feed and Food | Materials | Energy | ||
Forest wood incl. residues | <5.8 | / | <7 | 12–18 |
Agricultural biomass (crops, residues, grazed biomass; without residues left on field) | 14.5 | 14.5 | ||
Industrial byproducts | <1.7 | / | ||
Paper, wood, other waste | <2.3 | / | ||
Total | <24.3 | / | 33.5–39.5 | |
Not considered: Agricultural residues left on field | <3.9 | / | / | / |
Year | Fossil Sources | Biomass | Recycling | CO2 |
---|---|---|---|---|
2020 | 93.0% | 6.0% | / | / |
2050 | 6.3% | 27.8% | 11.1% | 54.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kircher, M. Economic Trends in the Transition into a Circular Bioeconomy. J. Risk Financial Manag. 2022, 15, 44. https://doi.org/10.3390/jrfm15020044
Kircher M. Economic Trends in the Transition into a Circular Bioeconomy. Journal of Risk and Financial Management. 2022; 15(2):44. https://doi.org/10.3390/jrfm15020044
Chicago/Turabian StyleKircher, Manfred. 2022. "Economic Trends in the Transition into a Circular Bioeconomy" Journal of Risk and Financial Management 15, no. 2: 44. https://doi.org/10.3390/jrfm15020044
APA StyleKircher, M. (2022). Economic Trends in the Transition into a Circular Bioeconomy. Journal of Risk and Financial Management, 15(2), 44. https://doi.org/10.3390/jrfm15020044