International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches
Abstract
:1. Introduction
2. Literature Review
2.1. Portfolio Optimization
2.2. Stochastic Dominance
2.3. International Versus Domestic Diversification Benefits
3. Data, Methodology and Hypotheses
3.1. Data
1 | Apple (AAPL) | 16 | Citigroup (C) |
2 | Exxon Mobil (XOM) | 17 | Merck (MRK) |
3 | Microsoft (MSFT) | 18 | Verizon Communications (VZ) |
4 | Johnson & Johnson (JNJ) | 19 | Cisco Systems (CSCO) |
5 | General Electric (GE) | 20 | PepsiCo (PEP) |
6 | Wal-Mart (WMT) | 21 | Schlumberger (SLB) |
7 | Chevron (CVX) | 22 | Disney (DIS) |
8 | Wells Fargo (WFC) | 23 | JPMorgan Chase (JPM) |
9 | Procter & Gamble (PG) | 24 | Intel (INTC) |
10 | IBM (IBM) | 25 | Home Depot (HD) |
11 | Pfizer (PFE) | 26 | United Technologies (UTX) |
12 | AT&T (T) | 27 | McDonald’s (MCD) |
13 | Coca-Cola (KO) | 28 | Boeing (BA) |
14 | Bank of America (BAC) | 29 | ConocoPhillips (COP) |
15 | Oracle (ORCL) | 30 | Amgen (AMGN) |
3.2. Portfolio Optimization
3.3. Stochastic Dominance Test
- H0 : Fj (xi) = Gj (xi), for all xi, i = 1,2,...,k;
- HA : Fj (xi) ≠ Gj (xi) for some xi;
- HA1 : Fj (xi) ≤ Gj (xi) for all xi, Fj (xi) < Gj (xi) for some xi;
- HA2 : Fj (xi) ≥ Gj (xi) for all xi, Fj (xi) > Gj (xi) for some xi.
4. Empirical Results
4.1. Portfolio Optimization
Mean (µ) | Std Dev (σ) | CV (σ/µ) | Skewness | Kurtosis | |
---|---|---|---|---|---|
DOD1 | 0.00048 | 0.00973 | 20.26 | 0.19096 | 9.21767 |
DOD2 | 0.00055 | 0.00997 | 18.01 | 0.15212 | 8.61416 |
DOD3 | 0.00063 | 0.01059 | 16.88 | 0.10630 | 7.39123 |
DOD4 | 0.00070 | 0.01159 | 16.53 | 0.07693 | 6.09004 |
DOD5 | 0.00077 | 0.01295 | 16.72 | 0.06230 | 5.29170 |
DOD6 | 0.00085 | 0.01459 | 17.19 | 0.03572 | 4.87478 |
DOD7 | 0.00092 | 0.01645 | 17.84 | 0.02482 | 4.73178 |
DOD8 | 0.00010 | 0.01851 | 18.58 | 0.03847 | 4.94001 |
DOD9 | 0.00107 | 0.02093 | 19.57 | 0.03114 | 5.46898 |
DOD10 | 0.00114 | 0.02371 | 20.73 | 0.02005 | 5.95474 |
Mean (µ) | Std Dev (σ) | CV (σ/µ) | Skewness | Kurtosis | |
---|---|---|---|---|---|
IND1 | 0.00032 | 0.00684 | 21.53 | −0.21007 | 5.04703 |
IND2 | 0.00038 | 0.00712 | 18.92 | −0.18726 | 4.45829 |
IND3 | 0.00044 | 0.00799 | 18.36 | −0.15911 | 3.76602 |
IND4 | 0.00050 | 0.00973 | 19.34 | −0.12344 | 3.49837 |
IND5 | 0.00051 | 0.00997 | 19.54 | −0.11918 | 3.54673 |
IND6 | 0.00052 | 0.01059 | 20.04 | −0.10654 | 3.72651 |
IND7 | 0.00055 | 0.01159 | 20.93 | −0.05806 | 3.88917 |
IND8 | 0.00059 | 0.01294 | 22.00 | −0.04853 | 4.43614 |
IND9 | 0.00063 | 0.01459 | 23.30 | −0.00687 | 4.79284 |
IND10 | 0.00066 | 0.01645 | 24.74 | 0.01599 | 5.32968 |
IND11 | 0.00071 | 0.01851 | 2609.17 | 0.07545 | 5.83010 |
IND12 | 0.00076 | 0.02093 | 27.69 | 0.10862 | 6.26873 |
IND13 | 0.00081 | 0.02371 | 29.39 | 0.13647 | 6.54289 |
4.2. Stochastic Dominance
Portfolios | IND1 | IND2 | IND3 | IND4 | IND5 | IND6 | IND7 | IND8 | IND9 | IND10 | IND11 | IND12 | IND13 | SSD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DOD1 | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 8 | |||
DOD2 | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 8 | |||
DOD3 | ND | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 7 | |||
DOD4 | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | 6 | |||||
DOD5 | ND | SSD | SSD | SSD | SSD | SSD | 5 | |||||||
DOD6 | ND | SSD | SSD | SSD | SSD | 4 | ||||||||
DOD7 | ND | SSD | SSD | SSD | 3 | |||||||||
DOD8 | ND | SSD | SSD | 2 | ||||||||||
DOD9 | ND | SSD | 1 | |||||||||||
DOD10 | ND | 0 | ||||||||||||
SSD | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Portfolios | DOD1 | DOD2 | DOD3 | DOD4 | DOD5 | DOD6 | DOD7 | DOD8 | DOD9 | DOD10 | SSD | TSD | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IND1 | SSD | SSD | SSD | SSD | SSD | SSD | TSD | SSD | TSD | TSD | 7 | 3 | 10 |
IND2 | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 10 | 0 | 10 |
IND3 | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 10 | 0 | 10 |
IND4 | ND | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 7 | 0 | 7 |
IND5 | ND | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | SSD | 7 | 0 | 7 |
IND6 | ND | ND | SSD | SSD | SSD | SSD | SSD | SSD | 6 | 0 | 6 | ||
IND7 | ND | SSD | SSD | SSD | SSD | SSD | SSD | 6 | 0 | 6 | |||
IND8 | ND | SSD | SSD | SSD | SSD | SSD | 5 | 0 | 5 | ||||
IND9 | ND | SSD | SSD | SSD | SSD | 4 | 0 | 4 | |||||
IND10 | ND | SSD | SSD | SSD | 3 | 0 | 3 | ||||||
IND11 | ND | SSD | SSD | 2 | 0 | 2 | |||||||
IND12 | ND | SSD | 1 | 0 | 1 | ||||||||
IND13 | ND | 0 | 0 | 0 | |||||||||
SSD | 3 | 3 | 3 | 5 | 7 | 8 | 8 | 10 | 10 | 11 | |||
TSD | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | |||
Total | 3 | 3 | 3 | 5 | 7 | 8 | 9 | 10 | 11 | 12 |
FSD | ||
T1 > 0 | T1 < 0 | |
Total (%) | 18.3 | 20.8 |
Positive Domain (%) | 18.3 | 0 |
Negative Domain (%) | 0 | 20.8 |
Max (|Tj|) | 8.31 | 9.92 |
SSD | ||
T2 > 0 | T2 < 0 | |
Total (%) | 39.9 | 0 |
Positive Domain (%) | 39.9 | 0 |
Negative Domain (%) | 0 | 0 |
Max (|Tj|) | 8.53 | 0.63 |
TSD | ||
T3 > 0 | T3 < 0 | |
Total (%) | 27.9 | 0 |
Positive Domain (%) | 27.9 | 0 |
Negative Domain (%) | 0 | 0 |
Max (|Tj|) | 6.97 | NA |
FSD | ||
T1 > 0 | T1 < 0 | |
Total (%) | 0 | 0 |
Positive Domain (%) | 0 | 0 |
Negative Domain (%) | 0 | 0 |
Max (|Tj|) | 2.80 | 2.99 |
SSD | ||
T2 > 0 | T2 < 0 | |
Total (%) | 0 | 0 |
Positive Domain (%) | 0 | 0 |
Negative Domain (%) | 0 | 0 |
Max (|Tj|) | 1.88 | 2.12 |
TSD | ||
T3 > 0 | T3 < 0 | |
Total (%) | 0 | 0 |
Positive Domain (%) | 0 | 0 |
Negative Domain (%) | 0 | 0 |
Max (|Tj|) | 1.75 | 1.21 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- H. Markowitz. “Portfolio selection.” J. Financ. 7 (1952): 77–91. [Google Scholar]
- R.O. Michaud. “The Markowitz optimization enigma: Is “optimized” optimal? ” Financ. Anal. J. 45 (1989): 31–42. [Google Scholar] [CrossRef]
- Z.D. Bai, H.X. Liu, and W.K. Wong. “Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory.” Math. Financ. 19 (2009): 639–667. [Google Scholar] [CrossRef]
- Z.D. Bai, H.X. Liu, and W.K. Wong. “On the Markowitz mean-variance analysis of self-financing portfolios.” Risk Decis. Anal. 1 (2009): 35–42. [Google Scholar]
- Z.D. Bai, H. Li, H.X. Liu, and W.K. Wong. “Test statistics for prospect and Markowitz stochastic dominances with applications.” Econom. J. 14 (2011): 278–303. [Google Scholar] [CrossRef]
- P.L. Leung, H.Y. Ng, and W.K. Wong. “An improved estimation to make Markowitz’s portfolio optimization theory practically useful and users friendly.” Eur. J. Oper. Res. 222 (2012): 85–95. [Google Scholar] [CrossRef]
- R.B. Porter, and J.E. Gaumnitz. “Stochastic dominance vs. mean-variance portfolio analysis: An empirical evaluation.” Am. Econ. Rev. 62 (1972): 438–446. [Google Scholar]
- J. Glen, and P. Jorion. “Currency hedging for international portfolios.” J. Financ. 48 (1993): 1865–1886. [Google Scholar] [CrossRef]
- S. Ross. “Some stronger measures of risk aversion in the small and the large with applications.” Econometrica 49 (1981): 621–638. [Google Scholar] [CrossRef]
- W.K. Wong. “Stochastic dominance and mean-variance measures of profit and loss for business planning and investment.” Eur. J. Oper. Res. 182 (2007): 829–843. [Google Scholar] [CrossRef]
- P.L. Leung, and W.K. Wong. “On testing the equality of the multiple Sharpe ratios, with application on the evaluation of iShares.” J. Risk 10 (2008): 1–16. [Google Scholar]
- C. Ma, and W.K. Wong. “Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR.” Eur. J. Oper. Res. 207 (2010): 927–935. [Google Scholar] [CrossRef]
- Z.D. Bai, K.F. Phoon, K.Y. Wang, and W.K. Wong. “The performance of commodity trading advisors: A mean-variance-ratio test approach.” N. Am. J. Econ. Financ. 25 (2013): 188–201. [Google Scholar] [CrossRef]
- Z.D. Bai, Y.C. Hui, W.K. Wong, and R. Zitikis. “Evaluating prospect performance: Making a case for a non-asymptotic UMPU test.” J. Financ. Econ. 10 (2012): 703–732. [Google Scholar]
- J. Hadar, and S. Russel. “Rules for ordering uncertain prospects.” Am. Econ. Rev. 59 (1969): 25–34. [Google Scholar]
- H. Levy. “Stochastic dominance and expected utility: Survey and analysis.” Manag. Sci. 38 (1992): 555–593. [Google Scholar] [CrossRef]
- C.K. Li, and W.K. Wong. “Extension of stochastic dominance theory to random variables RAIRO.” Rech. Opér. 33 (1999): 509–524. [Google Scholar]
- C. Hodges, and J. Yoder. “Time diversification and security preferences: A stochastic dominance analysis.” Rev. Quant. Financ. Account. 7 (1996): 289–298. [Google Scholar] [CrossRef]
- O.T. Meyer, X.M. Li, and C.L. Rose. “Comparing mean variance tests with stochastic dominance tests when assessing international portfolio diversification benefits.” Financ. Serv. Rev. 14 (2005): 149–168. [Google Scholar]
- W.K. Wong, H.E. Thompson, S. Wei, and Y.F. Chow. “Do winners perform better than losers? A stochastic dominance approach.” Adv. Quant. Anal. Financ. Account. 4 (2006): 219–254. [Google Scholar] [CrossRef]
- H.H. Lean, R. Smyth, and W.K. Wong. “Revisiting calendar anomalies in Asian stock markets using a stochastic dominance approach.” J. Multinatl. Financ. Manag. 17 (2007): 125–141. [Google Scholar] [CrossRef]
- D. Gasbarro, W.K. Wong, and J.K. Zumwalt. “Stochastic dominance analysis of iShares.” Eur. J. Financ. 13 (2007): 89–101. [Google Scholar] [CrossRef]
- W.M. Fong, W.K. Wong, and H.H. Lean. “Stochastic dominance and the rationality of the momentum effect across markets.” J. Financ. Mark. 8 (2005): 89–109. [Google Scholar]
- W.K. Wong, K.F. Phoon, and H.H. Lean. “Stochastic dominance analysis of Asian hedge funds.” Pac. Basin Financ. J. 16 (2008): 204–223. [Google Scholar] [CrossRef]
- A. Abhyankar, K. Ho, and H. Zhao. “International value versus growth: Evidence from stochastic dominance analysis.” Int. J. Financ. Econ. 14 (2009): 222–232. [Google Scholar] [CrossRef]
- F. Abid, M. Mroua, and W.K. Wong. “Impact of option strategies in financial portfolios performance: Mean-variance and stochastic dominance approaches.” Financ. India 23 (2009): 503–526. [Google Scholar]
- H.H. Lean, M. McAleer, and W.K. Wong. “Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach.” Energy Econ. 32 (2010): 979–986. [Google Scholar] [CrossRef]
- C.Y. Chan, C. De Peretti, Z. Qiao, and W.K. Wong. “Empirical test of the efficiency of UK covered warrants market: Stochastic dominance and likelihood ratio test approach.” J. Empir. Financ. 19 (2012): 162–174. [Google Scholar] [CrossRef]
- Z. Qiao, E. Clark, and W.K. Wong. “Investors’ preference towards risk: Evidence from the Taiwan stock and stock index futures markets.” Account. Financ. 54 (2012): 251–274. [Google Scholar] [CrossRef]
- B. Solnik. “Why not diversify internationally rather than domestically? ” Financ. Anal. J. 68 (1995): 89–94. [Google Scholar] [CrossRef]
- C.S. Eun, and B.G. Resnick. “International diversification of investment portfolios: U.S. and Japanese perspectives.” Manag. Sci. 40 (1994): 140–161. [Google Scholar] [CrossRef]
- K. Li, A. Sarkar, and Z. Wang. “Diversification benefits of emerging markets subject to portfolio constraints.” J. Empir. Financ. 10 (2003): 57–80. [Google Scholar] [CrossRef]
- T.O. Meyer, and L.C. Rose. “The persistence of international diversification benefits before and during the Asian crisis.” Glob. Financ. J. 14 (2003): 217–242. [Google Scholar] [CrossRef]
- F. Carrieri, V. Errunza, and S. Sarkissian. “Industry risk and market integration.” Manag. Sci. 50 (2004): 207–221. [Google Scholar] [CrossRef]
- J. Driessen, and L. Laeven. “International portfolio diversification benefits: Cross-country evidence from a local perspective.” J. Bank. Financ. 31 (2007): 1693–1712. [Google Scholar] [CrossRef]
- W.-J.P. Chiou. “Benefits of international diversification with investment constraints: An over-time perspective.” J. Multinatl. Financ. Manag. 19 (2009): 93–110. [Google Scholar] [CrossRef]
- C. Eun, S. Lai, F. Roon, and Z. Zhang. “International diversification with factor funds.” Manag. Sci. 56 (2010): 1500–1518. [Google Scholar] [CrossRef] [Green Version]
- K. French, and J. Poterba. “Investor diversification and international equity markets.” Am. Econ. Rev. 81 (1991): 222–226. [Google Scholar]
- L. Tesar, and I. Werner. “Home bias and high turnover.” J. Int. Money Financ. 14 (1995): 467–492. [Google Scholar] [CrossRef]
- K. Lewis. “Trying to explain home bias in equities and consumption.” J. Econ. Lit. 37 (1999): 571–608. [Google Scholar] [CrossRef]
- M. Kilka, and M. Weber. “Home bias in international stock return expectations.” J. Behav. Financ. 1 (2000): 176–192. [Google Scholar]
- A. Oehler, M. Rummer, and S. Wendt. “Portfolio Selection of German Investors: On the Causes of Home-Biased Investment Decisions.” J. Behav. Financ. 9 (2008): 149–162. [Google Scholar] [CrossRef]
- A. Antoniou, O. Olusi, and K. Paudyal. “Equity home-bias: A suboptimal choice for UK investors? ” Eur. Financ. Manag. 16 (2010): 449–479. [Google Scholar] [CrossRef]
- Z. Qiao, T.C. Chiang, and W.K. Wong. “Long-run equilibrium, short-term adjustment, and spillover effects across Chinese segmented stock markets.” J. Int. Financ. Mark. Inst. Money 18 (2008): 425–437. [Google Scholar] [CrossRef]
- G. Hanoch, and H. Levy. “The efficiency analysis of choices involving risk.” Rev. Econ. Stud. 36 (1969): 335–346. [Google Scholar] [CrossRef]
- W.K. Wong, and R.H. Chan. “Markowitz and prospect stochastic dominances.” Ann. Financ. 4 (2008): 105–129. [Google Scholar] [CrossRef]
- S. Sriboonchita, W.K. Wong, S. Dhompongsa, and H.T. Nguyen. Stochastic Dominance and Applications to Finance, Risk and Economics. Boca Raton, FL, USA: Chapman and Hall/CRC, 2009. [Google Scholar]
- W.K. Wong, and C.K. Li. “A note on convex stochastic dominance theory.” Econ. Lett. 62 (1999): 293–300. [Google Scholar] [CrossRef]
- W.K. Wong, and C. Ma. “Preferences over location-scale family.” Econ. Theory 37 (2008): 119–146. [Google Scholar] [CrossRef]
- R. Jarrow. “The relationship between arbitrage and first order stochastic dominance.” J. Financ. 41 (1986): 915–921. [Google Scholar] [CrossRef]
- G. Barrett, and S. Donald. “Consistent tests for stochastic dominance.” Econometrica 71 (2003): 71–104. [Google Scholar]
- O. Linton, E. Maasoumi, and Y.-J. Whang. “Consistent testing for stochastic dominance under general sampling schemes.” Rev. Econ. Stud. 72 (2005): 735–765. [Google Scholar] [CrossRef]
- R. Davidson, and J.Y. Duclos. “Statistical inference for the measurement of the incidence of taxes and transfers.” Econometrica 52 (2000): 761–776. [Google Scholar]
- H.H. Lean, W.K. Wong, and X. Zhang. “Size and power of stochastic dominance tests.” Math. Comput. Simul. 79 (2008): 30–48. [Google Scholar] [CrossRef]
- H. Li, Z.D. Bai, M. McAleer, and W.K. Wong. “Stochastic dominance statistics for risk averters and risk seekers: An analysis of stock preferences for USA and China.” Quant. Financ. conditionally accepted. , 2014. [Google Scholar]
- W.M. Fong, H.H. Lean, and W.K. Wong. “Stochastic dominance and behavior towards risk: The market for internet stocks.” J. Econ. Behav. Organ. 68 (2008): 194–208. [Google Scholar] [CrossRef]
- U. Broll, M. Egozcue, W.K. Wong, and R. Zitikis. “Prospect theory, indifference curves, and hedging risks.” Appl. Math. Res. Express 2 (2010): 142–153. [Google Scholar]
- D. Gasbarro, W.K. Wong, and J.K. Zumwalt. “Stochastic dominance and behavior towards risk: The market for iShares.” Ann. Financ. Econ. 7 (2012): 1250005. [Google Scholar] [CrossRef]
- K. Lam, T.S. Liu, and W.K. Wong. “A pseudo-Bayesian model in financial decision making with implications to market volatility, under- and overreaction.” Eur. J. Oper. Res. 203 (2010): 166–175. [Google Scholar] [CrossRef]
- K. Lam, T.S. Liu, and W.K. Wong. “A new pseudo-Bayesian model with implications to financial anomalies and investors’ behaviors.” J. Behav. Financ. 13 (2012): 93–107. [Google Scholar] [CrossRef]
- F.J. Fabozzi, C.Y. Fung, K. Lam, and W.K. Wong. “Market overreaction and underreaction: Tests of the directional and magnitude effects.” Appl. Financ. Econ. 23 (2013): 1469–1482. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Abid, F.; Leung, P.L.; Mroua, M.; Wong, W.K. International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches. J. Risk Financial Manag. 2014, 7, 45-66. https://doi.org/10.3390/jrfm7020045
Abid F, Leung PL, Mroua M, Wong WK. International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches. Journal of Risk and Financial Management. 2014; 7(2):45-66. https://doi.org/10.3390/jrfm7020045
Chicago/Turabian StyleAbid, Fathi, Pui Lam Leung, Mourad Mroua, and Wing Keung Wong. 2014. "International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches" Journal of Risk and Financial Management 7, no. 2: 45-66. https://doi.org/10.3390/jrfm7020045
APA StyleAbid, F., Leung, P. L., Mroua, M., & Wong, W. K. (2014). International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches. Journal of Risk and Financial Management, 7(2), 45-66. https://doi.org/10.3390/jrfm7020045