Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement
Abstract
:1. Introduction
2. Reliability
2.1. Reliability Indices
2.2. Reliability Evaluation
3. 69 Bus Test System
4. Distributed Generation
4.1. Wind Data
4.2. Photovoltaic Data
5. Cuckoo Search Algorithm
5.1. Cuckoo Search via Levy Flights
5.2. Cuckoo Style for Egg Laying
- The population size (NP) is the parameter representing the number of host nests.
- The maximum number of iterations or the time consumed by the algorithm (Itermax).
- The discovery rate of alien eggs per solution (Pa) is the parameter representing the probability of recognizing the cuckoo’s egg by the host bird.
- The levy distribution factor (beta).
- CS is more proficient in finding the global optimum solution with higher rates of success;
- CS has outperformed both PSO and GA in terms of less number of parameters to be controlled, as there are mainly two parameters: Pa and the population size NP basically control the elitism;
- CS is robust and more generic for numerous optimization problems compared with other optimization algorithms.
6. Case Studies
6.1. Case 1
6.2. Case 2
6.3. Case 3
6.4. Case 4
- Introducing the system line data (Zfeeder) and bus data;
- Introducing the probable levels of wind or photovoltaic output power and the load level;
- Allocating wind farm at node X and photovoltaic array at node Y;
- Updating the bus data (Pload) at nodes of wind and photovoltaic penetration according to their output power level;(Ploadupdated)nodeX = (Pload)nodeX − PDG
- Calculating the PENS;
- Checking the coverage of all probable levels of photovoltaic power;
- Calculating the probable power losses of the system.
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Billinton, R.; Allan, R. Reliability Evaluation of Power Systems, 2nd ed.; Springer: New York, NY, USA, 1996. [Google Scholar]
- Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M. Reliability improvement of distribution systems using SSVR. ISA Trans. 2009, 48, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Billinton, R. A test system for teaching overall power system reliability assessment. IEEE Trans. Power Syst. 1996, 11, 1670–1676. [Google Scholar] [CrossRef]
- Das, B.; Deka, B. Impact of location of distributed generation on reliability of distribution system. IOSR J. Electr. Electron. Eng. 2013, 8, 42–50. [Google Scholar] [CrossRef]
- Kumar, A.; Pant, S.; Ram, M. System reliability optimization using gray wolf optimizer algorithm. Qual. Reliab. Eng. Int. J. 2017, 33, 1327–1335. [Google Scholar] [CrossRef]
- Ray, S.; Bhattacharya, A.; Bhattacharjee, S. Optimal placement of switches in a radial distribution network for reliability improvement. Int. J. Electr. Power Energy Syst. 2016, 76, 53–68. [Google Scholar] [CrossRef]
- Tippachon, W.; Rerkpreedapong, D. Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization. Electr. Power Syst. Res. 2009, 79, 1171–1178. [Google Scholar] [CrossRef]
- Pregelj, A.; Begović, M.; Rohatgi, A. Recloser allocation for improved reliability of DG-enhanced distribution networks. IEEE Trans. Power Syst. 2006, 21, 1442–1449. [Google Scholar] [CrossRef]
- Wang, L.W.L.; Singh, C. Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2008, 38, 757–764. [Google Scholar] [CrossRef]
- Qin, Q.; Wu, N.E. Recloser and sectionalizer placement for reliability improvement using discrete event simulation. In Proceedings of the 2014 IEEE PES General Meeting, National Harbor, MD, USA, 27–31 July 2014. [Google Scholar]
- Popović, D.H.; Greatbanks, J.A.; Begović, M.; Pregelj, A. Placement of distributed generators and reclosers for distribution network security and reliability. Int. J. Electr. Power Energy Syst. 2005, 27, 398–408. [Google Scholar] [CrossRef]
- Zhu, D.; Broadwater, R.P.; Tam, K.S.; Seguin, R.; Asgeirsson, H. Impact of DG placement on reliability and efficiency with time-varying loads. IEEE Trans. Power Syst. 2006, 21, 419–427. [Google Scholar] [CrossRef]
- Mao, Y.M.; Miu, K.N. Switch placement to improve system reliability for radial distribution systems with distributed generation. IEEE Trans. Power Syst. 2003, 18, 1346–1352. [Google Scholar]
- Chitara, D.; Niazi, K.R.; Swarnkar, A.; Gupta, N. Cuckoo search optimization algorithm for designing of multimachine power system stabilizer. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016. [Google Scholar]
- Chitara, D.; Niazi, K.R.; Swarnkar, A.; Gupta, N. Robust tuning of multimachine power system Stabilizer via CuckooSearch Optimization Algorithm. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), New Delhi, India, 4–6 July 2016. [Google Scholar]
- Mukund, R.P. Wind and Solar Power Systems; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Soroudi, A.; Aien, M.; Ehsan, M. A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks. IEEE Trans. Power Syst. 2013, 28, 1493–1502. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F. Probabilistic approach for optimal allocation of wind based distributed generation in distribution systems. IET Renew. Power Gener. 2011, 5, 79–88. [Google Scholar] [CrossRef]
- National Solar Radiation Database. Available online: http://rredc.nrel.gov/solar/old_data/nsrdb/ (accessed on 25 December 2015).
- Pentapalli1, V.V.G.; Varma, R.K. Cuckoo Search Optimization and its Applications: A Review. Int. J. Adv. Res. Comput. Commun. Eng. 2016, 5. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC2009), Coimbatore, India, 9–11 December 2009. [Google Scholar]
- Rajabioun, R. Cuckoo optimization algorithm. Appl. Soft Comput. J. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Shilane, D.; Martikainen, J.; Dudoit, S.; Ovaska, S.J. A general framework for statistical performance comparison of evolutionary computation algorithms. Inf. Sci. Int. J. 2008, 178, 2870–2879. [Google Scholar] [CrossRef]
- Nazih, N.; Sweif, R.A.; Abdel-Salam, T.S.; Mostafa, M.A. Probabilistic Analysis for Wind System using Differential Evolution Algorithm. In Proceedings of the 17th International Middle East Power Systems Conference (MEPCON 15), El Mansoura, Egypt, 15–17 December 2015. [Google Scholar]
Parameter | Value |
---|---|
Time (iteration number) ≡ Itermax | 200 |
n (number of nests) ≡ NP | 50 |
Pa (Discovery rate of alien eggs/solutions) | 0.25 |
Beta (Levy distribution factor) | 3/2 |
AI Techniques | COA | PSO | GA |
---|---|---|---|
Recloser locations | Feeders 49 & 61 | Feeders 26 & 9 | Feeders 50 & 12 |
ENS | 67,881 | 68,056 | 68,003 |
Case 1 | Values | Values after Closing Ties (14, 56, 63, 69 & 70) |
---|---|---|
SAIFI | 15.34 | 15.34 |
SAIDI | 17.95 | 17.57 |
CAIDI | 1.170 | 1.17 |
ASUI | 0.002 | 0.002 |
ENS | 68,057 | 66,611.85 |
AENS | 3.9036 | 3.9036 |
Case 2 | With Two Reclosers | With Three Reclosers |
---|---|---|
SAIFI | 15.34 | 15.34 |
SAIDI | 13.29 | 13.29 |
CAIDI | 0.86 | 0.86 |
ASUI | 0.0015 | 0.0015 |
ENS | 50,280 | 50,280 |
AENS | 2.94 | 2.94 |
Locations | Feeders 49 & 61 | Feeders 49, 61 & 26 |
Case 3 | A F1 | B ENS | |
---|---|---|---|
200 kW (2 × 100 kW) | OBJ | 9.07 | 46,352 |
Recloser locations | Feeders 61, 50 | Feeders 61, 49 | |
DG size | 23.7 kW 100 kW | 100 kW 97 kW | |
DG Locations | 38, 48 | 2, 64 | |
400 kW (2 × 200 kW) | OBJ | 9.0703 | 42,465 |
Recloser locations | Feeders 61, 50 | Feeders 61, 50 | |
DG size | 0.15 kW 186 kW | 200 kW 198 kW | |
DG Locations | 30, 69 | 2, 50 | |
600 kW (2 × 300 kW) | OBJ | 9.0703 | 40,341 |
Recloser locations | Feeders 61, 50 | Feeders 61, 64 | |
DG size | 0.15 kW 186 kW | 300 kW 300 kW | |
DG Locations | 30, 69 | 50, 49 |
Case 3: Methodology B ENS | DG Number of Units | |||
---|---|---|---|---|
2 | 3 | 4 | ||
(1 × 100 kW) | OBJ | 46,352 | 44,578 | 43,669 |
Recloser Locations | Feeders 61 & 49 | Feeders 61 & 49 | Feeders 61 & 49 | |
DG Size | 100 kW 97 kW | 100 kW 100 kW 90.4 kW | 100 kW 100 kW 99.9 kW 59.6 kW | |
DG Locations | 2 64 | 64 50 50 | 50 64 64 18 | |
(1 × 200 kW) | OBJ | 42,465 | 40,766 | 37,606 |
Recloser Locations | Feeders 61 & 50 | Feeders 61 & 50 | Feeders 61 & 50 | |
DG Size | 200 kW 198 kW | 86.7 kW 200 kW 200 kW | 198 kW 142 kW 200 kW 164.8 kW | |
DG Locations | 2 50 | 49 49 48 | 49 11 64 50 | |
(1 × 300 kW) | OBJ | 40,341 | 38,035 | 36,082 |
Recloser Locations | Feeders 61 & 64 | Feeders 61 & 50 | Feeders 61 & 54 | |
DG Size | 300 kW 300 kW | 23.58 kW 300 kW 300 kW | 300 kW 226 kW 300 kW 228 kW | |
DG Locations | 50 49 | 37 29 68 | 50 64 49 61 |
DG Size | (3×200 kW) | (2×300 kW) |
---|---|---|
Power Loss | 135.1 kW | 130.21 kW |
Case 3: Methodology B ENS | WT Units | PV Units | |||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 2 | 3 | 4 | ||
(1 × 100 kW) | OBJ | 50,634 | 51,962.5 | 55,565.3 | 49,487.2 | 54,998.7 | 56,998 |
Recloser Locations | Feeders 61, 50 | Feeders 61, 69 | Feeders 68, 62 | Feeders 12, 61 | Feeders 2, 61 | Feeders 34, 2 | |
DG Size | 96.4 kW 93.5 kW | 100 kW 4.52 kW 40.12 kW | 99.4 kW 100 kW 88.6 kW 14.7 kW | 80.7 kW 94 kW | 23.6 kW 83.3 kW 100 kW | 93.31 kW 100 kW 48.6 kW 76.9 kW | |
DG Locations | 11 49 | 61 39 42 | 49 61 62 52 | 49 50 | 8 49 53 | 61 60 19 26 | |
(1 × 200 kW) | OBJ | 46,604.6 | 49,614.1 | 48,508.9 | 49,368.9 | 42,062.3 | 51,083.5 |
Recloser Locations | Feeders 61, 65 | Feeders 59, 50 | Feeders 63, 2 | Feeders 61, 49 | Feeders 49, 46 | Feeders 4, 12 | |
DG Size | 161.9 kW 131.8 kW | 41.21 kW 184.5 kW 101.7 kW | 104.3 kW 179 kW 194.9 kW 33.38 kW | 144 kW 20.2 kW | 200 kW 166.7 kW 74.3 kW | 119.8 kW 159 kW 190.5 kW 35.91 kW | |
DG Locations | 49 50 | 46 61 62 | 49 11 64 50 | 61 59 | 61 50 48 | 50 61 69 62 | |
(1 × 300 kW) | OBJ | 43,689.46 | 42,463.5 | 55,551 | 41,820.5 | 41,817.3 | 42,455.3 |
Recloser Locations | Feeders 2, 52 | Feeders 3, 61 | Feeders 50, 31 | Feeders 64, 54 | Feeders 50, 49 | Feeders 68, 21 | |
DG Size | 270.3 kW 300 kW | 279.8 kW 148.5 kW 281.2 kW | 71.5 kW 100 kW 100 kW 94 kW | 249.9 kW 274.5 kW | 241.1 kW 96.6 kW 213 kW | 167.6 kW 300 kW 93.4 kW 300 kW | |
DG Locations | 61 49 | 49 (2 units) 32 | 49 61 62 29 | 50 61 | 61 62 42 | 50 61 2 49 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swief, R.A.; Abdel-Salam, T.S.; El-Amary, N.H. Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement. Energies 2018, 11, 139. https://doi.org/10.3390/en11010139
Swief RA, Abdel-Salam TS, El-Amary NH. Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement. Energies. 2018; 11(1):139. https://doi.org/10.3390/en11010139
Chicago/Turabian StyleSwief, R. A., T. S. Abdel-Salam, and Noha H. El-Amary. 2018. "Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement" Energies 11, no. 1: 139. https://doi.org/10.3390/en11010139
APA StyleSwief, R. A., Abdel-Salam, T. S., & El-Amary, N. H. (2018). Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement. Energies, 11(1), 139. https://doi.org/10.3390/en11010139