The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil
Abstract
:1. Introduction
2. Materials and Procedure
3. Experimental Results
4. Statistical Analysis of Experimental Data
4.1. Weibull Probability of the AC Breakdown Voltage of the Investigated Samples
4.2. Histogram and Normal Distribution of the AC Breakdown Voltage of the Investigated Samples
4.3. Estimation of the the Main Breakdown Voltage Probabilities
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Segal, V.; Hjortsberg, A.; Rabinovich, A.; Nattrass, D.; Raj, K. AC (60 Hz) and Impulse Breakdown Strength of a Colloidal Fluid Based on Transformer Oil and Magnetite Nanoparticles. In Proceedings of the Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, Arlington, VA, USA, 7–10 June 1998. [Google Scholar]
- Kopcansky, P.; Tomco, L.; Marton, K.; Koneracka, M.; Timko, M.; Potocova, I. The DC dielectric breakdown strength of magnentic fluids based on transformer oil. J. Magn. Mater. 2005, 289, 415–418. [Google Scholar] [CrossRef]
- Nazari, M.; Rasoulifard, M.H.; Hosseini, H. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test. J. Magn. Magn. Mater. 2016, 399, 1–4. [Google Scholar] [CrossRef]
- Rafiq, M.; Li, C.; Ge, Y.; Lv, Y.; Yi, K. Effect of Fe3O4 Nanoparticle Concentrations on Dielectric Property of Transformer Oil. In Proceedings of the 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, 19–22 September 2016. [Google Scholar]
- Lv, Y.; Rafiq, M.; Li, C.; Shan, B. Study of dielectric breakdown performance of transformer oil based magnetic nanofluids. Energies 2017 10, 1025.
- Zaky, A.A.; Megahed, I.Y.; Evangelou, C. The effect of organic additives on the breakdown and gassing properties of mineral oils. J. Phys. D Appl. Phys. 1976, 9, 841–849. [Google Scholar] [CrossRef]
- Evangelou, C.; Zaky, A.A.; Megahed, I.Y. The effect of organic additives on the breakdown strength of transformer oil. J. Phys. D Appl. Phys. 1973, 6, 60–62. [Google Scholar] [CrossRef]
- Mathes, K.N.; Rouse, T.O. Influence of Aromatic compounds in oil on Pirelli Gassing and Impulse Surge Breakdown. In Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena-Annual Report, Gaithersburg, MD, USA, 3–6 November 1975; pp. 129–140. [Google Scholar]
- Blaunstein, R.P.; Christophorou, L.G. On Molecular Parameters of Physical, Chemical and Biological Interest. Radiat Res. Rev. 1971, 3, 69–118. [Google Scholar]
- Allen, A.O.; Gangwer, T.E.; Holroyd, R. Chemical Reaction Rates of Quasi Free Electrons in Non-Polar Liquids. J. Phys. Chem. 1975, 79, 25–31. [Google Scholar] [CrossRef]
- Devins, J.C.; Rzad, S.J.; Schwabe, R.J. Breakdown and Pre-breakdown Phenomena in Liquids. J. Appl. Phys. 1981, 52, 4531–4545. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yamada, H. Optical Study of Conduction and Breakdown in Dielectric Liquids. IEEE Trans. Electr. Insul. 1980, 15, 171–181. [Google Scholar] [CrossRef]
- Chadband, W.G.; Sufian, T.M. Experimental Support for a Model of Positive Streamers Propagation in Liquid Insulation. IEEE Trans. Electr. Insul. 1985, 20, 239–246. [Google Scholar] [CrossRef]
- Hebner, R.E.; Kelley, E.F.; Forster, E.O.; Fitzpatrick, G.J. Observation of Pre-breakdown and Breakdown Phenomena in Liquid Hydrocarbons Non-uniform Field Conditions. IEEE Trans. Electr. Insul. 1985, 20, 281–292. [Google Scholar] [CrossRef]
- Beroual, A.; Tobazéeon, R. Pre-breakdown Phenomena in Liquid Dielectrics. IEEE Trans. Electr. Insul. 1986, 21, 613–627. [Google Scholar] [CrossRef]
- Beroual, A.; Tobazeon, R. Propagation et génération des streamers dans les diélectriques liquides. Rev. Phys. Appl. 1987, 22, 1117–1123. [Google Scholar] [CrossRef]
- Houser, H.; Jarnagin, R.C. Electron Ejection from Triplet State in Fluid Solution. J. Chem. Phys. 1970, 52, 1069–1078. [Google Scholar] [CrossRef]
- Nakao, Y.; Itoh, H.; Hoshino, S.; Sakai, Y.; Tagashira, H. Effects of additives on prebreakdown phenomena in n-hexane. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 383–389. [Google Scholar] [CrossRef]
- Beroual, A. Electronic processes and streamer propagation phenomena in insulating oils. Arch. Electr. Eng. 1995, 4, 579–592. [Google Scholar]
- Beroual, A.; Zahn, M.; Badent, A.; Kist, K.; Schwabe, A.J.; Yamashita, H.; Yamazawa, K.; Danikas, M.; Chadband, W.D.; Torshin, Y. Propagation and structure of streamers in liquid dielectrics. IEEE Electr. Insul. Mag. 1998, 14, 6–17. [Google Scholar] [CrossRef]
- Yamada, H.; Sato, T. High-speed Electro-optical Measurement of Pre-breakdown Current in Dielectric Liquids. IEEE Trans. Electr. Insul. 1985, 20, 261–267. [Google Scholar] [CrossRef]
- Ingebrigtsen, S.; Lundgaard, L.E.; Åstrand, P.-O. Effects of additives on prebreakdown phenomena in liquid cyclohexane: I. Streamer initiation. J. Phys. D Appl. Phys. 2007, 40, 5161–5169. [Google Scholar] [CrossRef]
- Beroual, A.; Aka-N’Gnui, T. Influence of Additives and Hydrostatic Pressure on Streamers Initiation and Dielectric Strength of Liquids. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, QR, Mexico, 20–24 October 2002; pp. 248–251. [Google Scholar]
- Beroual, A. Electronic and gaseous processes in the prebreakdown phenomena of dielectric liquids. J. Appl. Phys. 1993, 73, 4528–4533. [Google Scholar] [CrossRef]
- Beroual, A. Pre-Breakdown Mechanisms in Dielectric Liquids and Predicting Models. In Proceedings of the IEEE Electrical Insulation Conference, Montréal, QC, Canada, 19–22 June 2016. [Google Scholar]
- IEC TC/SC 10. IEC 60156 Ed. 2, Insulating Liquids-Determination of the Breakdown Voltage at Power Frequency–Test Method; ANSI: Washington, DC, USA, 1995. [Google Scholar]
- Makmud, M.Z.H.; Illias, H.A.; Chee, C.Y.; Sarjadi, M.S. Influence of conductive and semi-conductive nanoparticles on the dielectric response of natural ester-based nanofluid Insulation. Energies 2018, 11, 333. [Google Scholar] [CrossRef]
- Peppas, G.D.; Danikas, M.G.; Bakandritsos, A.; Charalampakos, V.P.; Pyrgioti, E.C.; Gonos, I.F. Statistical investigation of ac breakdown voltage of nanofluids compared with mineral and natural ester oil. IET Sci. Meas. Technol. 2016, 10, 644–652. [Google Scholar] [CrossRef]
- Dang, V.-H.; Beroual, A.; Perrier, C. Comparative Study of Statistical Breakdown in Mineral, Synthetic and Natural Ester Oils under AC Voltage. In Proceedings of the 2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 26–30 June 2011. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: www.r-project.org (accessed on 2 July 2018).
Property | Mineral Oil |
---|---|
Density at 25 °C (g/mL) | 0.85 |
Kinematic viscosity at 40 °C (cSt) | 9 |
Pour point (°C) | −40 |
Flash point (°C) | 150 |
Fire point (°C) | 160 |
Total acid number (mg KOH/g) | <0.5 |
Antioxidant content | <0.3% |
Water content (ppm) | 39 |
Gassing characteristics (mm3/min) | −35 to +30 |
Interfacial tension (mN/m) | 40–60 |
Resistivity (Ω·m) | >3 × 109 |
Dissipation factor at 90 °C | 0.1–0.5% |
Concentration of the Additives | p-Value MO/CCl4 | p-Value MO/CH3I | Conformity to a Weibull Distribution |
---|---|---|---|
Pure (MO) | 0.123 | Accepted | |
200 ppm | 0.250 | 0.186 | Accepted |
300 ppm | 0.250 | 0.250 | Accepted |
400 ppm | 0.250 | 0.250 | Accepted |
500 ppm | 0.250 | 0.250 | Accepted |
600 ppm | 0.250 | 0.250 | Accepted |
Concentration of the Additives | p-Value MO/CCl4 | p-Value MO/CH3I | Conformity to a Normal Distribution | |
---|---|---|---|---|
MO/CCl4 | MO/CH3I | |||
Pure (MO) | 0.593 | Accepted | ||
200 ppm | 0.012 | 0.034 | Not Accepted | |
300 ppm | 0.291 | 0.023 | Accepted | Not Accepted |
400 ppm | 0.266 | 0.457 | Accepted | |
500 ppm | 0.457 | 0.198 | Accepted | |
600 ppm | 0.020 | 0.542 | Not Accepted | Accepted |
BDV Probability (%) | BDV (kV) | Type of Additives | 200 ppm | 300 ppm | 400 ppm | 500 ppm | 600 ppm | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BDV (kV) | Increment (%) | BDV (kV) | Increment (%) | BDV (kV) | Increment (%) | BDV (kV) | Increment (%) | BDV (kV) | Increment (%) | |||
1.0 | 31 | CCl4 | 70 | 62.04 | 40 | −7.41 | 26 | −39.81 | 18 | −58.33 | 13 | −69.91 |
CH3I | 49 | 13.43 | 62.5 | 44.68 | 62.6 | 44.91 | 70.2 | 62.50 | 56 | 29.63 | ||
10.0 | 35 | CCl4 | 73 | 40.38 | 46 | −11.54 | 30 | −42.31 | 23 | −55.77 | 16 | −69.23 |
CH3I | 55.5 | 6.73 | 66 | 26.92 | 66.5 | 27.88 | 74 | 42.31 | 64 | 23.08 | ||
50.0 | 39 | CCl4 | 75 | 24.17 | 52 | −13.91 | 34 | −43.71 | 28 | −53.64 | 18 | −70.20 |
CH3I | 63.5 | 5.13 | 71 | 17.55 | 72 | 19.21 | 76 | 25.83 | 70 | 15.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaled, U.; Beroual, A. The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil. Energies 2018, 11, 2607. https://doi.org/10.3390/en11102607
Khaled U, Beroual A. The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil. Energies. 2018; 11(10):2607. https://doi.org/10.3390/en11102607
Chicago/Turabian StyleKhaled, Usama, and Abderrahmane Beroual. 2018. "The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil" Energies 11, no. 10: 2607. https://doi.org/10.3390/en11102607
APA StyleKhaled, U., & Beroual, A. (2018). The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil. Energies, 11(10), 2607. https://doi.org/10.3390/en11102607