Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review
Abstract
:1. Introduction
1.1. Biodiesel Production Routes
1.2. Properties of Biodiesel
2. Raw Materials for Biodiesel Production
2.1. Parametric Effects for Biodiesel Production
2.2. Types of Raw Materials
3. Palm Oil as a Primary Source for Biodiesel Production
3.1. Historical Perspective
3.2. Benefits and Characteristics of Palm-Biodiesel
4. Prospects and Directions of Palm-Biodiesel
4.1. Environmental Impact
4.2. Food vs. Fuel
4.3. The Prospect of Palm Oil By-Products and Mill Effluent for Biodiesel Production
5. Future Challenges
5.1. Sustainability and Feasibility of Palm-Biodiesel Production
5.2. Economic Viewpoint
5.3. Environmental Preservation
5.4. Social Impact
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Venkatesan, M.; Vikram, C.J.; Naveenchandran, P. Performance and emission analysis of pongamia oil methyl ester with diesel blend. Middle-East J. Sci. Res. 2012, 12, 1758–1765. [Google Scholar] [CrossRef]
- Adewale, P.; Dumont, M.J.; Ngadi, M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew. Sustain. Energy Rev. 2015, 45, 574–588. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Avhad, M.R.; Marchetti, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 2015, 50, 696–718. [Google Scholar] [CrossRef]
- Charusiri, W.; Vitidsant, T. Response surface methodology optimization of biofuels produced by catalytic pyrolysis of residual palm oil from empty fruit bunch over magnesium oxide. J. Chem. Eng. Jpn. 2017, 50, 727–736. [Google Scholar] [CrossRef]
- Sani, Y.M.; Daud, W.M.A.W.; Abdul Aziz, R.A. Biodiesel feedstock and production technologies: Successes, challenges and prospects. In Biodiesel—Feedstocks, Production and Applications; Zhen, F., Ed.; IntechOpen: London, UK, 2012; pp. 77–101. [Google Scholar]
- Sommani, P.; Mankong, N.; Vitidsant, T.; Lothongkum, A.W. Cracking of used vegetable oil mixed with polypropylene waste in the presence of activated carbon. ASEAN Eng. J. Part B 2013, 4, 16–24. [Google Scholar]
- Duran, E.A.; Tinoco, R.; Perez, A.; Berrones, R.; Eapen, D.; Sebastian, P.J. A comparative study of biodiesel purification with magnesium silicate and water. J. New Mater. Electrochem. Syst. 2014, 17, 105–111. [Google Scholar] [CrossRef]
- Stamenkovic, O.S.; Todorovic, Z.B.; Lazic, M.L.; Veljkovic, V.B.; Skala, D.U. Kinetics of sunflower oil methanolysis at low temperatures. Bioresour. Technol. 2008, 99, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, A.; Getachew, T.; Teshita, A. A review on biodiesel production as alternative fuel. J. For. Prod. Ind. 2015, 4, 80–85. [Google Scholar]
- Parkar, P.A.; Choudhary, H.A.; Moholkar, V.S. Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis. Chem. Eng. J. 2012, 187, 248–260. [Google Scholar] [CrossRef]
- Talha, N.S.; Sulaiman, S. Overview of catalysts in biodiesel production. ARPN J. Eng. Appl. Sci. 2016, 11, 439–448. [Google Scholar]
- Jose, M.D.A.; Cardoso, A.L. Heterogeneous tin catalysts applied to the esterification and transesterification reactions. J. Catal. 2013, 1–12. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Saifuddin, N.; Samiuddin, A.; Kumaran, P. A review on processing technology for biodiesel production. Trends Appl. Sci. Res. 2015, 10, 1–37. [Google Scholar] [CrossRef]
- Alhassan, F.H.; Yunus, R.; Rashid, U.; Sirat, K.; Islam, A.; Lee, H.V.; Taufiq-Yap, Y.H. Production of biodiesel from mixed waste vegetable oils using ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst. Appl. Catal. A Gen. 2013, 456, 182–187. [Google Scholar] [CrossRef]
- De Lima, A.L.; Ronconi, C.M.; Mota, C.J.A. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 2016, 6, 2877–2891. [Google Scholar] [CrossRef]
- Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.F.; Wilson, K. Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal. Today 2015, 242, 3–18. [Google Scholar] [CrossRef]
- Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Heterogeneous catalysts for biodiesel production. Energy Fuels 2008, 22, 207–217. [Google Scholar] [CrossRef]
- Sivasamy, A.; Cheah, K.Y.; Fornasiero, P.; Kemausuor, F.; Zinoviev, S.; Miertus, S. Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2009, 2, 278–300. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zheng, X.; Li, S. A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: Preparation, characterization and application in biodiesel production. Bioresour. Technol. 2014, 151, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yucel, S.; Terzioglu, P.; Ozcimen, D. Lipase applications in biodiesel production. In Biodiesel-Feedstocks, Production and Application; Zhen, F., Ed.; IntechOpen: London, UK, 2013; pp. 209–250. [Google Scholar]
- Ondul, E.; Dizge, N.; Keskinler, B.; Albayrak, N. Biocatalytic production of biodiesel from vegetable oils. In Biofuels—Status and Perspective; Biernat, K., Ed.; IntechOpen: London, UK, 2015; pp. 21–37. doi:10.5772/59949. [Google Scholar]
- Ranganathan, S.V.; Narasimhan, S.L.; Muthukumar, K. An overview of enzymatic production of biodiesel. Bioresour. Technol. 2008, 99, 3975–3981. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Mathew, S.; Obbard, J.P. Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 2009, 1, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Nan, Y.; Liu, J.; Lin, R.; Tavlarides, L.L. Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: Process optimization. J. Supercrit. Fluids 2015, 97, 174–182. [Google Scholar] [CrossRef]
- Qiao, B.Q.; Zhou, D.; Li, G.; Yin, J.Z.; Xue, S.; Liu, J. Process enhancement of supercritical methanol biodiesel production by packing beds. Bioresour. Technol. 2017, 228, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.; Encinar, J.M.; Martinez, G.; Gonzalez, J.F. Biodiesel production from castor oil under subcritical methanol conditions. Int. J. Environ. Sci. Dev. 2015, 6, 61–66. [Google Scholar] [CrossRef]
- Ang, G.T.; Tan, K.T.; Lee, K.T. Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renew. Sustain. Energy Rev. 2014, 31, 61–70. [Google Scholar] [CrossRef]
- Andreani, L.; Rocha, J.D. Use of ionic liquids in biodiesel production: A review. Braz. J. Chem. Eng. 2012, 29, 1–13. [Google Scholar] [CrossRef]
- Han, B.; Li, T.; Deng, R.; Xiong, X.; Chen, C. A review on Bronsted acid ionic liquids catalysts for biodiesel synthesis through transesterification. Appl. Mech. Mater. 2013, 389, 46–52. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Yu, S.; Xie, C. Transesterification of waste oil to biodiesel using Bronsted acid ionic liquid as catalyst. Bull. Chem. Soc. Ethiop. 2013, 27, 289–294. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Jiang, W.; Li, D.; Liu, S.; Liang, B. Biodiesel production from crude Jatropha curcas L. oil with trace acid catalyst. Chin. J. Chem. Eng. 2012, 20, 740–746. [Google Scholar] [CrossRef]
- Lam, M.K.; Tan, K.T.; Lee, K.T.; Mohamed, A.R. Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renew. Sustain. Energy Rev. 2009, 13, 1456–1464. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel: A Realistic Fuel Alternative for Diesel Engines; Springer: London, UK, 2008. [Google Scholar]
- Gerpen, J.V. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Adam, A.A.; Ishak, W.F.W.; Alenezi, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines-A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Liennard, A.; Pioch, D.; Chirat, N.; Lozano, P.; Vaitilingom, G. Energy generation from ‘‘neat’’ vegetable oils. In Proceedings of the SciELO of 4th Encontro de Energia no Meio Rural, Campinas, Brazil, 28–31 October 2002. [Google Scholar]
- Datta, A.; Mandal, B.K. A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew. Sustain. Energy Rev. 2016, 57, 799–821. [Google Scholar] [CrossRef]
- Aarthy, M.; Saravanan, P.; Gowthaman, M.K.; Rose, C.; Kamini, N.R. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chem. Eng. Res. Des. 2014, 92, 1591–1601. [Google Scholar] [CrossRef]
- The U.S. Department of Energy, Alternative Fuels Data Center for the USA. Available online: https://www.afdc.energy.gov/fuels/prices.html (accessed on 17 July 2018).
- Ejikeme, P.M.; Anyaogu, I.D.; Ejikeme, C.L.; Nwafor, N.P.; Egbuonu, C.A.C.; Ukogu, K.; Ibemesi, J.A. Catalysis in biodiesel production by transesterification processes—An insight. E-J. Chem. 2010, 7, 1120–1132. [Google Scholar] [CrossRef]
- Leong, B.S.; Rus, M.; Zafiah, A.; Hasan, S. Continuous biodiesel production using ultrasonic clamp on tubular reactor. In Proceedings of the International Conference on Mechanical Engineering Research (ICMER2013), Kuantan, Pahang, Malaysia, 1–3 July 2013; pp. 1–10. [Google Scholar]
- Le, T.T.; Okitsu, K.; Luu, V.B.; Maeda, Y. Catalytic technologies for biodiesel fuel production and utilization of glycerol: A review. Catalysts 2012, 2, 191–222. [Google Scholar] [CrossRef]
- Romano, S.D.; Sorichetti, P.A. Introduction to biodiesel production, in: Dielectric spectroscopy in biodiesel production and characterization. In Green Energy and Technology; Springer: London, UK, 2011; pp. 7–27. [Google Scholar]
- Shahzad, K.; Nizami, A.S.; Sagir, M.; Rehan, M.; Maier, S.; Khan, M.Z.; Ouda, M.; Ismail, L.M.I.; BaFail, A.O. Biodiesel production potential from fat fraction of municipal waste in Makkah. PLoS ONE 2017, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Voca, N.; Krieka, T.; Janu, V.; Ana, J.; Darko, M. Fuel properties of biodiesel produced from different raw materials in Croatia. J. Mech. Eng. 2008, 54, 232–244. [Google Scholar]
- Halim, S.F.A.; Kamaruddin, A.H. Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem. 2008, 43, 1436–1439. [Google Scholar] [CrossRef]
- Azocar, L.; Ciudad, G.; Heipieper, H.J.; Navia, R. Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol. 2010, 88, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 2009, 102, 1298–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duti, I.J.; Maliha, M.; Ahmed, S. Biodiesel production from waste frying oil and its process simulation. J. Mod. Sci. Technol. 2016, 4, 50–62. [Google Scholar]
- Zanati, E.; El Abdallah, H.; Elnahas, G. Micro-reactor for non-catalyzed esterification reaction: Performance and modeling. Int. J. Chem. React. Eng. 2016, 1–12. [Google Scholar] [CrossRef]
- Bashiri, H.; Pourbeiram, N. Biodiesel production through transesterification of soybean oil: A kinetic Monte Carlo study. J. Mol. Liquids 2016, 223, 10–15. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Aziz, A.M.; Al-Tamer, M.H. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Convers. Manag. 2016, 108, 255–265. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwari, P.; Garg, S. Alkali transesterification of linseed oil for biodiesel production. Fuel 2013, 104, 553–560. [Google Scholar] [CrossRef]
- Lee, H.V.; Juan, J.C.; Taufiq-Yap, Y.H. Preparation and application of binary acid-base CaO-La2O3 catalyst for biodiesel production. Renew. Energy 2015, 74, 124–132. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.; Jiang, W.; Li, Y.; Li, J. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 2015, 180, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wahlen, B.D.; Morgan, M.R.; Mccurdy, A.T.; Willis, R.M.; Morgan, M.D.; Dye, D.J.; Bugbee, B.; Wood, B.C.; Seefeldt, L.C. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 2013, 27, 220–228. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M.; Sanli, H. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 2014, 34, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sakurai, Y.; Kakuta, Y.; Sugano, M.; Hirano, K. Biodiesel production from waste animal fats using pyrolysis method. Fuel Process. Technol. 2012, 94, 47–52. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew. Energy 2015, 76, 362–368. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X.; Kusakabe, K.; Abudula, A. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 2015, 95, 242–247. [Google Scholar] [CrossRef]
- Tan, H.Y.; Abdullah, O.M.; Nolasco-hipolito, C.; Taufiq-Yap, Y.H. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl. Energy 2015, 160, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Olkiewicz, M.; Caporgno, M.P.; Fortuny, A.; Stuber, F.; Fabregat, A.; Font, J.; Bengoa, C. Direct liquid-liquid extraction of lipid from municipal sewage sludge for biodiesel production. Fuel Process. Technol. 2014, 128, 331–338. [Google Scholar] [CrossRef] [Green Version]
- El Boulifi, N.; Bouaid, A.; Martinez, M.; Aracil, J. Optimization and oxidative stability of biodiesel production from rice bran oil. Renew. Energy 2013, 53, 141–147. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Li, A.; Ngo, T.P.N.; Yan, J.; Tian, K.; Li, Z. Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresour. Technol. 2012, 114, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, A.; Xu, Y.; Ngo, T.P.N.; Phua, S.; Li, Z. Efficient production of biodiesel from waste grease: One-pot esterification and transesterification with tandem lipases. Bioresour. Technol. 2012, 123, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. The effects of water on biodiesel production and refining technologies: A review. Renew. Sustain. Energy Rev. 2012, 16, 3456–3470. [Google Scholar] [CrossRef]
- Da Silva, C.; Vladimir Oliveira, J. Biodiesel production through non-catalytic supercritical transesterification: Current state and perspectives. Braz. J. Chem. Eng. 2014, 31, 271–285. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Moein, P. Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol. J. Supercrit. Fluids 2013, 76, 24–31. [Google Scholar] [CrossRef]
- Aziz, S.M.A.; Wahi, R.; Ngaini, Z.; Hamdan, S.; Yahaya, S.A. Esterification of microwave pyrolytic oil from palm oil kernel shell. J. Chem. 2017, 1–8. [Google Scholar] [CrossRef]
- Ribeiro, A.; Castro, F.; Carvalho, J. Influence of free fatty acid content in biodiesel production on non-edible oils. In Proceedings of the 1st International Conference WASTES: Solutions, Treatments and Opportunities, Guimarães, Portugal, 12–14 September 2011. [Google Scholar]
- Cunha Jr., A.; Feddern, V.; De Pra, M.C.; Higarashi, M.M.; De Abreu, P.G.; Coldebella, A. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 2013, 105, 228–234. [Google Scholar] [CrossRef]
- Ahmad, J.; Yusup, S.; Bokhari, A.; Kamil, R.N.M. Study of fuel properties of rubber seed oil-based biodiesel. Energy Convers. Manag. 2014, 78, 266–275. [Google Scholar] [CrossRef]
- Al-Zuhair, S.; Hussein, A.; Al-Marzouqi, A.H.; Hashim, I. Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochem. Eng. J. 2012, 60, 106–110. [Google Scholar] [CrossRef]
- Aransiola, E.F. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. Afr. J. Biotechnol. 2012, 11, 6178–6186. [Google Scholar] [CrossRef]
- Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M. Biodiesel production using oil from fish canning industry wastes. Energy Convers. Manag. 2013, 74, 17–23. [Google Scholar] [CrossRef]
- Katre, G.; Joshi, C.; Khot, M.; Zinjarde, S.; RaviKumar, A. Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2012, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Sarkar, M.; Srivastava, R.B.; Gogoi, H.K.; Kalita, M.C. Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnol. 2012, 29, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Khot, M.; Kamat, S.; Zinjarde, S.; Pant, A.; Chopade, B.; RaviKumar, A. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb. Cell Fact. 2012, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, Z.K. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol. 2007, 82, 775–780. [Google Scholar] [CrossRef]
- Rashid, U.; Ibrahim, M.; Yasin, S.; Yunus, R.; Taufiq-Yap, Y.H.; Knothe, G. Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Ind. Crops Prod. 2013, 45, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Sani, W. Multistage Methanolysis of Crude Palm Oil for Biodiesel Production in a Pilot Plant. Ph.D. Thesis, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia, 2014. [Google Scholar]
- Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Chong, W.T. Characterization and production of Ceiba pentandra biodiesel and its blends. Fuel 2013, 108, 855–858. [Google Scholar] [CrossRef]
- Zhou, X.; Ge, H.; Xia, L.; Zhang, D.; Hu, C. Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresour. Technol. 2013, 134, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knothe, G. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22, 1358–1364. [Google Scholar] [CrossRef]
- Vauhkonen, V.; Niemi, S.; Hiltunen, E.; Salminen, H.J.; Pasila, A. The first-generation biodiesel: The effects of raw material on physical properties, oxidation stability and emissions. In Proceedings of the International Conference on Clean Electrical Power, Capri, Italy, 19–11 June 2009; pp. 17–123. [Google Scholar]
- Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Imtenan, S.; Shahir, S.A.; Mobarak, H.M. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers. Manag. 2014, 80, 202–228. [Google Scholar] [CrossRef]
- Popp, J.; Harangi-Rakos, M.; Gabnai, Z.; Balogh, P.; Antal, G.; Bai, A. Biofuels and their co-products as livestock feed: Global economic and environmental implications. Molecules 2016, 21, 285. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Shahbazi, M.R.; Khoshandam, B.; Nasiri, M.; Ghazvini, M. Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil—Characterization, kinetics model. J. Taiwan Inst. Chem. Eng. 2012, 43, 504–510. [Google Scholar] [CrossRef]
- Kuss, V.V.; Kuss, A.V.; da Rosa, R.G.; Aranda, D.A.G.; Cruz, Y.R. Potential of biodiesel production from palm oil at Brazilian Amazon. Renew. Sustain. Energy Rev. 2015, 50, 1013–1020. [Google Scholar] [CrossRef]
- Sumathi, S.; Chai, S.P. Mohamed, A.R. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2008, 12, 2404–2421. [Google Scholar] [CrossRef]
- Magat, S.S. Understanding Right, the Productivity (Yield) of Coconut from the Philippines’ Research and Field Experience: A Knowledge Tool for Industry Development and Management (A Research Notes). 2001. Available online: http://www.pca.da.gov.ph/coconutrde/images/yield.pdf (accessed on 23 October 2017).
- Muppaneni, T.; Reddy, H.K.; Ponnusamy, S.; Patil, P.D.; Sun, Y.; Dailey, P.; Deng, S. Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach. Fuel 2013, 107, 633–640. [Google Scholar] [CrossRef]
- Ali, E.N.; Tay, C.I. Characterization of biodiesel produced from palm oil via base catalyzed transesterification. Procedia Eng. 2013, 53, 7–12. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renew. Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Mukherjee, I.; Sovacool, B.K. Palm oil-based biofuels and sustainability in Southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sustain. Energy Rev. 2014, 37, 1–12. [Google Scholar] [CrossRef]
- Gilbert, D. Oil palm and palm oil industry in Ghana: A brief history. Int. Res. J. Plant Sci. 2013, 4, 158–167. [Google Scholar]
- IndexMundi. 2018. Available online: https://www.indexmundi.com/commodities (accessed on 18 July 2018).
- Tek, J.C.Y.; Chandran, M.R. A century of oil palms in Malaysia. Inform 2005, 16, 142–143. [Google Scholar]
- Demirbas, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Convers. Manag. 2003, 44, 2093–2109. [Google Scholar] [CrossRef]
- Choo, M.C.; Ma, A.N.; Cheah, K.Y.; Majid, R.A.; Yap, A.K.C.; Lau, H.L.N.; Cheng, S.F.; Yung, C.L.; Puah, C.W.; Ng, M.H.; et al. Palm diesel: Green and renewable fuel from palm oil. Palm Oil Dev. 2005, 42, 3–7. [Google Scholar]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jayed, M.H.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jahirul, M.I. Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renew. Sustain. Energy Rev. 2009, 13, 2452–2462. [Google Scholar] [CrossRef]
- Hassan, M.N.A.; Jaramillo, P.; Griffin, W.M. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector’s energy security. Energy Policy 2011, 39, 2615–2625. [Google Scholar] [CrossRef]
- Likozar, B.; Levec, J. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition. Appl. Energy 2014, 123, 108–120. [Google Scholar] [CrossRef]
- Rathmann, R.; Szklo, A.; Schaeffer, R. Targets and results of the Brazilian biodiesel incentive program—Has it reached the promised land? Appl. Energy 2012, 97, 91–100. [Google Scholar] [CrossRef]
- Talukder, M.R.; Wu, J.C.; Fen, N.M.; Li, Y.; Melissa, S. Two-step lipase catalysis for production of biodiesel. Biochem. Eng. J. 2010, 49, 207–212. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Atabani, A.E.; Chong, W.T. A global comparative review of biodiesel production from Jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renew. Sustain. Energy Rev. 2013, 24, 514–533. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Wan Ghazali, W.N.M.; Mamat, R.; Masjuki, H.H.; Najafi, G. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew. Sustain. Energy Rev. 2015, 51, 585–602. [Google Scholar] [CrossRef]
- Nursal, R.S.; Zali, Z.; Haizri, H.; Amat, C.; Amear, S.; Ariffin, S.; Khalid, A. Comparative study of the performance and exhaust gas emissions of biodiesels derived from three different feedstocks with diesel on marine auxiliary diesel engine. ARPN J. Eng. Appl. Sci. 2017, 12, 2017–2028. [Google Scholar]
- Vieira da Silva, M.A.; Gil Ferreira, B.L.; da Costa Marques, L.G.; Soares Murta, A.L.; de Freitas, M.A.V. Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes. Fuel 2017, 194, 144–156. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Alnefaie, K.A. A comparative study of almond and palm oils as two bio-diesel fuels for diesel engine in terms of emissions and performance. Fuel 2015, 150, 318–324. [Google Scholar] [CrossRef]
- Ng, J.H.; Ng, H.K.; Gan, S. Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME). Appl. Energy 2012, 90, 58–67. [Google Scholar] [CrossRef]
- Sharon, H.; Karuppasamy, K.; Soban Kumar, D.R.; Sundaresan, A. A test on DI diesel engine fueled with methyl esters of used palm oil. Renew. Energy 2012, 47, 160–166. [Google Scholar] [CrossRef]
- Lin, B.F.; Huang, J.H.; Huang, D.Y. Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel 2009, 88, 1779–1785. [Google Scholar] [CrossRef]
- Puhan, S.; Vedaraman, N.; Rambrahamam, B.V.; Nagarajan, G. Mahua (Madhuca indica) seed oil: A source of renewable energy in India. J. Sci. Ind. Res. 2005, 64, 890–896. [Google Scholar]
- Choo, Y.M.; Cheng, S.F.; Yung, C.L.; Lau, H.L.N.; Ma, A.N.; Basiron, Y. Palm Diesel with Low Pour Point for Climate Countries. Malaysian Patent No. MY-141001-A, 12 February 2010. [Google Scholar]
- Ashnani, M.H.M.; Johari, A.; Hashim, H.; Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 2014, 35, 244–257. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Jangam, S.V.; Akhtar, S.; Sasmito, A.P.; Mujumdar, A.S. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Res. J. 2016, 3, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. (Eds.) Renewable Energy: Sources for Fuels and Electricity; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Kerschbaum, S.; Rinke, G.; Schubert, K. Winterization of biodiesel by micro process engineering. Fuel 2008, 87, 2590–2597. [Google Scholar] [CrossRef]
- Srinivasan, S. The food v. fuel debate: A nuanced view of incentive structures. Renew. Energy 2009, 34, 950–954. [Google Scholar] [CrossRef]
- Tan, K.T.; Lee, K.T.; Mohamed, A.R.; Bhatia, S. Palm oil: Addressing issues and towards sustainable development. Renew. Sustain. Energy Rev. 2009, 13, 420–427. [Google Scholar] [CrossRef]
- Rivera-Mendez, Y.D.; Rodriguez, D.T.; Romero, H.M. Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. J. Clean. Prod. 2017, 149, 743–750. [Google Scholar] [CrossRef]
- Roundtable on Sustainable Palm Oil. 2017. Available online: https://www.rspo.org (accessed on 23 October 2017).
- Sheil, D.; Casson, A.; Meijaard, E.; Noordwijk, M.V.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know? CIFOR Occasional Paper No. 51; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2009 doi:10.17528/cifor/002792; ISBN 978-979-1412-74-2. [Google Scholar]
- Koizumi, T. Biofuels and food security. Renew. Sustain. Energy Rev. 2015, 52, 829–841. [Google Scholar] [CrossRef]
- Chew, T.L.; Bhatia, S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour. Technol. 2008, 99, 7911–7922. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.A.; Taha, F.F.F. Drying of oil palm fronds using concentrated solar thermal power. Appl. Mech. Mater. 2015, 699, 449–454. [Google Scholar] [CrossRef]
- Basiron, Y.; Weng, C.K. The oil palm and its sustainability. J. Oil Palm Res. 2004, 16, 1–10. [Google Scholar]
- Herjanto, E.; Widana, I.D.K.K. Policy analysis: Solar substitution with biodiesel. J. Pertahanan. 2016, 2, 109–128. [Google Scholar]
- Aladetuyi, A.; Olatunji, G.; Ogunniyi, D.S.; Odetoye, T.E.; Oguntoye, S.O. Production and characterization of biodiesel using palm kernel oil; fresh and recovered from spent bleaching earth. Biofuel Res. J. 2014, 4, 134–138. [Google Scholar] [CrossRef]
- Nursulihatimarsyila, A.W.; Cheah, K.Y.; Chuah, T.G.; Siew, W.L.; Choong, T.S.Y. Deoiling and regeneration efficiencies of spent bleaching clay. Am. J. Appl. Sci. 2010, 7, 434–437. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Sumathi, S.; Hameed, B.H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Eng. J. 2006, 118, 99–105. [Google Scholar] [CrossRef]
- Ngarmkam, W.; Sirisathitkul, C.; Phalakornkule, C. Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME. J. Environ. Manag. 2011, 92, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Wahi, R.; Chuah, L.; Nourouzi, M.; Ngaini, Z.; Choong, T.; Yaw, S. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. J. Environ. Chem. Eng. 2017, 5, 170–177. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection. Biotechnol. Adv. 2011, 29, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Akinfalabi, S.I.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew. Energy 2017, 111, 611–619. [Google Scholar] [CrossRef]
- Al-Widyan, M.I.; Al-Shyoukh, A.O. Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour. Technol. 2002, 85, 253–256. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, J.K.; Hong, S.W.; Yeo, Y.K. Development of a novel process for biodiesel production from palm fatty acid distillate (PFAD). Fuel Process. Technol. 2012, 104, 271–280. [Google Scholar] [CrossRef]
- Chongkhong, S.; Tongurai, C.; Chetpattananondh, P.; Bunyakan, C. Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenergy 2007, 31, 563–568. [Google Scholar] [CrossRef]
- Surasit, C.; Yoosuk, B.; Pohmakotr, M. Biodiesel synthesis from palm fatty acid distillate using tungstophosphoric acid supported on cesium—Containing niobia. J. Am. Oil Chem. Soc. 2017, 94, 465–474. [Google Scholar] [CrossRef]
- Astar, I.; Usman, T.; Wahyuni, N.; Rudiyansyah; Alimuddin, A.H. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously. AIP Conf. Proc. 2017, 1823, 1–6. [Google Scholar] [CrossRef]
- Manurung, R.; Ramadhani, D.A.; Maisarah, S. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production. AIP Conf. Proc. 2017, 1855, 1–9. [Google Scholar] [CrossRef]
- Skrbic, B.; Predojevic, Z.; Durisic-Mladenovic, N. Esterification of sludge palm oil as a pretreatment step for biodiesel production. Waste Manag. Res. 2015, 33, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Ricca, R.N.; Md, Z.A.; Mohammed, S.J. Enzymatic biodiesel production from sludge palm oil (SPO) using locally produced Candida cylindracea lipase. Afr. J. Biotechnol. 2013, 12, 4966–4974. [Google Scholar] [CrossRef]
- Hidayat, A.; Sutrisno, B. Esterification free fatty acid in sludge palm oil using ZrO2/SO42−-rice husk ash catalyst. AIP Conf. Proc. 2017, 1840, 1–6. [Google Scholar] [CrossRef]
- Ngaini, Z.; Shahrom, F.D.; Jamil, N.; Wahi, R.; Ahmad, Z.A. Imperata cylindrica sp as novel silica-based heterogeneous catalysts for transesterification of palm oil mill sludge. J. Oleo Sci. 2016, 65, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Aranda, D.A.G.; Santos, R.T.P.; Tapanes, N.C.O.; Ramos, A.L.D.; Antunes, O.A.C. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal. Lett. 2008, 122, 20–25. [Google Scholar] [CrossRef]
- Babu, A.R.; Amba Prasad Rao, G.; Hari Prasad, T. Experimental investigations on a variable compression ratio (VCR) CIDI engine with a blend of methyl esters palm stearin-diesel for performance and emissions. Int. J. Ambient Energy 2017, 38, 420–427. [Google Scholar] [CrossRef]
- Baroutian, S.; Aroua, M.K.; Raman, A.A.; Sulaiman, N.M. RBD palm olein-based methyl/ethyl esters. J. Oil Palm Res. 2009, 21, 659–666. [Google Scholar]
- Choi, C.S.; Kim, J.W.; Jeong, C.J.; Kim, H.; Yoo, K.P. Transesterification kinetics of palm olein oil using supercritical methanol. J. Supercrit. Fluids 2011, 58, 365–370. [Google Scholar] [CrossRef]
- Sakdasri, W.; Sawangkeaw, R.; Ngamprasertsith, S. Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio. Energy Convers. Manag. 2015, 103, 934–942. [Google Scholar] [CrossRef]
- Suwanno, S.; Rakkan, T.; Yunu, T.; Paichid, N.; Kimtun, P. The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel 2017, 195, 82–87. [Google Scholar] [CrossRef]
- Klabsong, M.; Kungskulniti, N.; Puemchalad, C. Feasibility study of biodiesel production from residual oil of palm oil mill effluent. Int. J. GEOMATE 2017, 12, 60–64. [Google Scholar] [CrossRef]
- Hindryawati, N.; Erwin; Maniam, G.P. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst. AIP Conf. Proc. 2017, 1813, 1–11. [Google Scholar] [CrossRef]
- Suryani, A.; Mubarok, Z.; Suprihatin; Romli, M.; Yunira, E.N. Process design of in situ esterification—Transesterification for biodiesel production from residual oil of spent bleaching earth (SBE). IOP Conf. Ser. Earth Environ. Sci. 2017, 65, 1–11. [Google Scholar] [CrossRef]
- Maulidiyah; Nurdin, M.; Fatma, F.; Natsir, M.; Wibowo, D. Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing. Anal. Chem. Res. 2017, 12, 1–9. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, J.K.; Cho, H.J.; Yeo, Y.K. Techno-economic study of a biodiesel production from palm fatty acid distillate. Ind. Eng. Chem. Res. 2013, 52, 462–468. [Google Scholar] [CrossRef]
- Botero, C.D.; Restrepo, D.L.; Cardona, C.A. A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Res. J. 2017, 4, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Ghatak, H.R. Biorefineries from the perspective of sustainability: Feedstocks, products, and processes. Renew. Sustain. Energy Rev. 2011, 15, 4042–4052. [Google Scholar] [CrossRef]
- Gumba, R.E.; Saallah, S.; Misson, M.; Ongkudon, C.M.; Anton, A. Green biodiesel production: A review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res. J. 2016, 3, 431–447. [Google Scholar] [CrossRef]
- Schnepf, R.; Yacobucci, B.D. Renewable Fuel Standard (RFS): Overview and Issues; CRS Report No. R40155 for U.S. Congress; Congressional Research Service (CRS): Washington, DC, USA, 2010.
- Akia, M.; Yazdani, F.; Motaee, E.; Han, D.; Arandiyan, H. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res. J. 2014, 1, 16–25. [Google Scholar] [CrossRef]
- Bergsma, G.; Kampman, B.; Croezen, H.; Sevenster, M. Biofuels and Their Global Influence on Land Availability for Agriculture and Nature. A First Evaluation and a Proposal for Further Fact Finding; Report, CE Delf: Delf, The Netherlands, 2007. [Google Scholar]
- Goenadi, D.H. Perspective on Indonesian palm oil production. In Proceedings of the International Food & Agricultural Trade Policy Council’s Spring 2008 Meeting, Bogor, Indonesia, 12 May 2008; pp. 1–4. [Google Scholar]
- Reijnders, L.; Huijbregts, M.A.J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 2008, 16, 477–482. [Google Scholar] [CrossRef]
Methods | Main Process | Advantages | Disadvantages |
---|---|---|---|
Blending (dilution) | Preheated vegetable/animal oils were blended with petro-diesel within 10–40% (w/w) ratio. Then the resulted oil-diesel mixture was applied into the diesel engine. | Does not required any chemical process (non-polluting), absence of technical modifications, and easy implementation. | High viscosity, unstable, low volatility, and increase in vegetable/animal oil portion resulted in improper spraying pattern, poor atomization, incomplete fuel combustion, and difficulty in handling by conventional engines. |
Microemulsification | The vegetable/animal oils were solubilized in a solvent (alcohol) and surfactant until the required viscosity was obtained. | Simple process and pollution free. | High viscosity, low stability (the addition of ethanol can enhance the quantity of surfactant required to maintain the state of microemulsion), and could lead to sticking, incomplete combustion, and carbon deposition. |
Pyrolysis (thermal cracking) | The vegetable/animal oils were preheated and decomposed at elevated temperature (more than 350 °C) whether or not the catalyst is present. Different products (gas and liquid) were analysed based on their boiling temperature range to determine the exact product. | The process is effective, simple (not required washing, drying or filtering), wasteless, and pollution free. | Required high temperature and expensive equipment and produce low purity of biodiesel (contain heterogeneous molecules including ash and carbon residues). |
Transesterification | The vegetable/animal oils and fats were reacted with alcohol (ethanol or methanol) and catalyst (alkali or acid). Then the mixture of methyl/ethyl esters (biodiesel) and glycerol (byproduct) will undergo separation and purification steps before further usage. | High conversion with relatively low cost, mild reaction conditions, product properties are closer to the petro-diesel, and applicable for industrial-scale production. | Required low free fatty acids (FFAs) and water content in the raw material, extensive separation and purification steps, possibilities of side reaction to occur, and generation of a large amount of wastewater. |
Properties | ASTM D6751 | EN 14214 |
---|---|---|
Flash point, min (°C) | 100–170 | ≥120 |
Cloud point (°C) | −3–−12 | - * |
Pour point (°C) | −15–−16 | - * |
Kinematic viscosity at 40 °C (mm2/s) | 1.9–6.0 | 3.5–5.0 |
Specific gravity at 15 °C (kg/L) | 0.88 | 0.86–0.90 |
Density at 15 °C (kg/m3) | 820–900 | 860–900 |
Cetane number, min | 47 | 51 |
Iodine number, max | - * | 120 |
Acid number, max (mg KOH/g) | 0.50 | 0.50 |
Ash (wt %) | 0.02 | - * |
Sulphated ash, max % (m/m) | 0.02 | 0.02 |
Oxidation stability, min (h, 110 °C) | 3 | 6 |
Water and sediment, max (v/v %) | 0.05 | 0.03 |
Water content, max | 0.03 (v/v) | 500 (mg/kg) |
Free glycerol, max (mass %) | 0.02 | 0.02 |
Total glycerol, max (mass %) | 0.24 | 0.25 |
Sulphur content, max | 0.05% (m/m) | 10 mg/kg |
Phosphorus content, max | 0.001% (m/m) | 10 mg/kg |
Properties | Petro-Diesel | Biodiesel from Waste Cooking Oil |
---|---|---|
Flash point, min (°C) | 67–85 | 196 |
Pour point (°C) | −19–−13 | −11 |
Kinematic viscosity at 40 °C (mm2/s) | 1.9–4.1 | 5.3 |
Density at 15 °C (kg/m3) | 75–840 | 897 |
Cetane number, min | 40–46 | 54 |
Ash content (%) | 0.008–0.010 | 0.004 |
Carbon residue (%) | 0.35–0.40 | 0.33 |
Sulphur content (%) | 0.35–0.55 | 0.06 |
Water content (%) | 0.02–0.05 | 0.04 |
Higher heating value (MJ/kg) | 45.62–46.48 | 42.65 |
Properties | CO (ppm) | NOx (ppm) |
---|---|---|
Diesel fuel | 655 | 1270 |
Jatropha curcas (vegetable oil) | 601 | 1280 |
Rapeseed (vegetable oil) | 910 | 1235 |
Rapeseed methyl ester (biodiesel) | 555 | 1180 |
Properties | Price ($/gallon) [45] | ||
---|---|---|---|
1–31 July 2017 | 1–31 October 2017 | 1–30 April 2018 | |
Biodiesel (B20) | 2.49 | 2.68 | 2.87 |
Biodiesel (B99–B100) | 3.22 | 3.38 | 3.46 |
Diesel | 2.47 | 2.76 | 3.03 |
Parameters/References | [55] | [56] | [57] | [47] |
---|---|---|---|---|
Raw material | Waste frying oil | 2-ethyl hexanoic acid | Soybean oil | Vegetable oil |
Type of solvent | Methanol | Ethanol | Methanol | Methanol |
Solvent to oil ratio | 6:1 | 4:1 | 9:1 | 9:1 |
Type of catalyst | NaOH | Non-catalysed | NaOH | NaOH |
Catalyst concentration | - * | nil | 0.2 wt % | 0.75 wt % |
Temperature (°C) | 55 ± 2 | 25 | 50 | 64 |
Reaction time (s) | 3600 | 30 | 5400 | 60 |
Agitation speed (rpm) | 700 | - * | 600 | - * |
Condition (type of reactor) | Shake flask | Y-shape micro-reactor | Stirred tank reactor | Ultrasonic tubular reactor |
Initial raw material amount | 200 mL | - * | 200 g | 250 mL |
Sources | % (wt) Palmitic (C16:0) | % (wt) Stearic (C18:0) | % (wt) Oleic (C18:1) | % (wt) Linoleic (C18:2) | % (wt) Linolenic (C18:3) |
---|---|---|---|---|---|
Edible oils | |||||
Palm oil | 45 | 4 | 39 | 11 | - * |
Soybean | 7–14 | 1.4–5.5 | 19–30 | 44–62 | 4–11 |
Sunflower | 3–10 | 1–10 | 14–35 | 55–75 | <0.3 |
Rapeseed | 2.5–6.5 | 0.8–3.0 | 53–70 | 15–30 | 5–13 |
Corn | 8–10 | 1–4 | 30–50 | 3456 | 0.5–1.5 |
Coconut | 7–10 | 1–4 | 5–8 | 1–3 | - * |
Non-edible oils | |||||
Rubber seed | 6.47–9.9 | 6.6–9.9 | 12.8–24.95 | 18.87–37.59 | 7.97–18.23 |
Kapok seed | 19.2 | 2.6 | 17.4 | 39.7 | 1.5 |
Castor | 1.1 | 1.0 | 3.3 | 3.6 | 0.32 |
Citrus seed | 26.9 | 4.62 | 25.55 | 37.65 | 3.80 |
Neem | 18.1 | 18.1 | 44.5 | 18.3 | 0.2 |
Jatropha curcas | 10–17 | 5–10 | 36–64 | 18–45 | 2.4–3.4 |
Cotton seed | 21.4–26.4 | 2.1–5.0 | 14.7–21.7 | 46.7–58.2 | 0.0 |
Animal oils and fats | |||||
Chicken fat | 19.8 | 6.1 | 34.6 | 30.9 | 2.9 |
Beef tallow | 24.8 | 20.6 | 46.4 | 2.7 | 0.0 |
Fish waste (oil) | 21.6 | 4.1 | 17.3 | 1.7 | 2.9 |
Lamb meat (fat) | 10.1 | 6.0 | 35.0 | 36.0 | - * |
Microbial lipid | |||||
Microalgae (Scenedesmus sp.) | 10.8–16.7 | 2.3–2.6 | 7.8–14.9 | 6.8–8.3 | 15.4–25.0 |
Algae (Chlorella sp. NJ-18) | 24.53–36.37 | 0.98–2.06 | 13.57–17.19 | 33.7–40.77 | 11.32–18.46 |
Fungi (Aspergillus terreus) | 20.1–36.0 | 10.7–23.6 | 30.1–41.3 | 8.7–23.3 | 0.1–0.6 |
Yeast (Yarrowia lipolytica) | 2.8–24.1 | 4.6–7.7 | 3.5–38.6 | 2.7–14.6 | - * |
Cellular biomass (yeast) | 24.3–33.0 | 1.0–7.7 | 54.6–55.5 | 1.6–58.0 | 0.0–2.4 |
Waste cooking oil | 24.6 | 18.4 | 46.0 | 3.9 | 0.3 |
Sewage sludge | 27.4–49.4 | 8.3–15.8 | 18.3–39.6 | 0.6-7.2 | - * |
Type of Oils | Estimated Oil Content (kg oil/ha) [98,99] | Price (USD/ton) as May 2018 [106] |
---|---|---|
Palm oil | 5000 | 660.00 |
Soybean | 375 | 793.00 |
Rapeseed | 1000 | 812.00 |
Coconut | 2670–3310 | 1029.00 |
Sunflower | 800 | 782.00 |
Peanut | 890 | 1316.00 |
Type of Biodiesel | Kinematic Viscosity (40 °C; mm2/s) | Iodine Value | Cetane Number | Saponification Number | Higher Heating Value |
---|---|---|---|---|---|
Petro-diesel | 2.5–5.7 | - * | 45–55 | - * | 42–44.3 |
Palm oil | 4.42–4.76 | 35–61 | 59.9–62.8 | 186–209 | 37.2–39.91 |
Soybean | 4.08–4.42 | 117–143 | 37–52 | 201 | 37.3–39.66 |
Rapeseed | 4.59–5.83 | 94–120 | 37.6–56 | - * | 37.3–39.9 |
Corn | 3.39–4.36 | 103–140 | 55.4–59 | 202 | 39.87–41.14 |
Sunflower | 4.38–4.90 | 110–143 | 45–51 | 200 | 37.5–39.95 |
Peanut | 4.42–5.25 | 67.45 | 54 | 200 | 39.7 |
Cotton seed | 4.0–9.6 | 90–119 | 41.2–59.5 | 204 | 37.5–41.68 |
Jatropha curcas | 3.7–5.8 | 92–112 | 46–55 | 177–189 | 42.67 |
Fungi | 4.52–4.69 | 54.81–91.50 | 56.22–61.24 | 190–217 | 39.63–40.49 |
Yeast | 3.6–6.44 | 37.8–65.7 | 50.8–59.0 | 168.5–190.81 | 36.77–41.25 |
Tallow | - * | 126 | 59 | 218–235 | - * |
Parameters | Used Palm-Biodiesel | Mahua-Biodiesel | Jatropha-Biodiesel |
---|---|---|---|
Brake thermal efficiency | Decrease 7.26% | Decrease 13% | Decrease 7.0% |
Brake specific fuel consumption | Increase 14.55% | Increase 20% | Increase 29% |
Emissions of CO | Decrease 52.9% | Decrease 30% | Increase 37.77% |
Emissions of smoke | Decrease 19% | Decrease 11% | Increase 26% |
Emissions of hydrocarbon | Decrease 38.09% | Decrease 35% | Increase 65.43% |
Raw Material | References | Method/Reactor | Alcohol | Catalyst | Time (min) | Temp. (°C) | Stirring (RPM) | Yield (%) | Highlights |
---|---|---|---|---|---|---|---|---|---|
Waste palm oil (frying oil) | [148] | Flask | Ethanol | HCl & H2SO4 | 180 | 90 | nil | - * | Lower sulphur content & higher flash point. |
Palm fatty acid distillate | [147] | Flask | Methanol | SPSC-SO3H | 120 | 60 | 600 | 97.8 | Good reusability and better catalyst activity. |
Palm fatty acid distillate | [149] | Semi-batch reactor | Methanol | Non-catalytic | - * | 60 | - * | 91.2 | Mainly contains palmitic (33.5%) & oleic (41.6%) acids. |
Palm fatty acid distillate | [150] | Flask | Methanol | H2SO4 | 90 | 70–80 | - * | 93.9 | Mainly contains 45.6% palmitic and 33.3% oleic acids. Product follows the ASTM standard. |
Palm fatty acid distillate | [151] | Flask | Methanol | TPA/Cs1.0/Nb2O5 | 480 | 65 | 700 | 90.0 | Product properties are same with palm-biodiesel and follow ASTM D6751 and EN 14214 standard. |
Sludge oil | [152] | Flask | Methanol | EFB ash & Alum | 180 | 65 | - * | 86.17 | The conversion yield is higher than CPO. |
Sludge oil | [153] | Flask | Nil | NaOH & Deep eutectic solvent | 60 | 80 | 400 | 83.19 | Mainly contains palmitic (34.5%) & oleic (41.89%) acids. |
Sludge oil | [154] | Batch reactor | Methanol | H2SO4 | 120 | 65 | - * | - * | Achieved 96% of FFA conversion. |
Sludge oil | [155] | Flask | Ethanol | C. cylindracea lipase | 1440 (24 h) | 40 | 250 | 62.3 | POME based lipase shows a promising potential to reduce the production cost and environmental pollutions. |
Sludge oil | [156] | Flask | Methanol | Zr-rice husk ash | 240 | 60 | 500 | - * | The highest FFA conversion was 83.1%. |
Sludge oil | [157] | Flask | Methanol | Imperata cylindrica sp. | 60 | 65 | - * | 80.0 | The properties of B5 biodiesel produced within the standard limit with less smoke emissions when testing using diesel engine. |
Fatty acid residue | [158] | Batch reactor | Ethanol | H2SO4 | 60 | 130 | 500 | >90.0 | Reaction inhibited by the presence of water (soap formed). |
Palm stearin | [159] | Flask | Methanol | NaOH | * focus on performance and emissions: reduction in OC, HC, and smoke opacity. | 98.1 | The properties of B40 biodiesel within the standard limit. | ||
Used palm olein/glycerol | [160] | Batch reactor | Methanol | Non-catalytic | 18–20 | 400 | nil | 80.0 | The used palm olein oil has high FFAs content (4.56%). |
Palm olein | [161] | Supercritical process | Methanol | Non-catalytic | 20 | 350 | nil | 94.96 | The transesterification required harsh conditions. |
Palm olein | [162] | Batch reactor | Methanol/Ethanol | KOH | 60 | 50 | 700 | 98.1 | Follow the EN14214 standard and comparable with petrol-diesel. |
Residual oil from POME | [163] | Flask | Methanol | Crude lipase | 2160 (36 h) | 35 | 200 | 92.07 ± 1.04 | 8% of oil was recovered from POME. Biodiesel produce has high cetane number (59–60) and cloud point (10–13 °C). |
Residual oil from POME | [164] | Batch reactor | Methanol | Non-catalytic | 300 | 230 | 500 | 77.64 | Biodiesel produced mainly contains 45.45% of palmitic acid and 50.84% of oleic acid. |
Residual oil from palm decanter cake (PDC) | [165] | Flask | Methanol | Sulfonating rice husk ash | 300 | 120 | - * | 70.2 | 11.3% oil recovered from PDC. |
Residual oil of spent bleaching earth (SBE) | [166] | Batch reactor | Methanol | H2SO4 & NaOH | 90 | 65 | 730 | 84.5 | SBE contains 20–30% oil. Biodiesel has heater efficiency of 48% and specific energy of 6738 kJ/kg. |
Residual oil of spent bleaching earth (SBE) | [141] | Flask | Methanol | Cocoa pod ash (CPA) & KOH | 120 | 100 | - * | 86.0 & 81.20 | 16% residual oil recovered from SBE. The CPA is better catalyst than KOH. All fuel properties examined fell within the ASTM specification for B100. |
Liquid waste from CPO industry | [167] | Flask | Methanol | H2SO4 & CaO | 120 | 60 | - * | - * | Liquid waste of CPO contains 0.5–1% of oil. |
Residual oil from EFB | [6] | Continuous reactor | Nitrogen gas | MgO | - * | 500 | - * | 60.10 | Pyrolysis method had been used. The catalytic cracking produced higher yield. |
Pyrolytic oil from palm oil kernel shell | [77] | Quartz reactor | Ethanol | H2SO4 | * focus on the product quality: pH, density, and calorific value. | Product has better pH and calorific value without undesirable compounds. |
Areas | Benefits |
---|---|
Production cost |
|
Product yield and quality |
|
Environment and social |
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahan, K.A.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11, 2132. https://doi.org/10.3390/en11082132
Zahan KA, Kano M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies. 2018; 11(8):2132. https://doi.org/10.3390/en11082132
Chicago/Turabian StyleZahan, Khairul Azly, and Manabu Kano. 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review" Energies 11, no. 8: 2132. https://doi.org/10.3390/en11082132
APA StyleZahan, K. A., & Kano, M. (2018). Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies, 11(8), 2132. https://doi.org/10.3390/en11082132