First, the results and discussion of the scenarios with fixed energy storage (Scenario 1, 2 and 3) and subsequently the results of the scenarios with optimized storage (Scenarios 4 and 5) and transmission expansion (Scenario 5) are presented. In all the cases Scenario 0 is used as a reference scenario.
3.1. Scenarios 1, 2 and 3
As shown in
Table 5, Scenarios 1, 2 and 3 do not include energy storage in the optimization formulation, meaning that its addition is an exogenous process and is seen as “free” from the systems perspective. After running the model for the different scenarios, it is evident that storage has an impact in the amount of non-dispatchable renewable capacity that is installed in the system, as is shown in
Figure 3.
Figure 3a shows that in the long-term in Scenario 0 (no storage) there is already an important increase in the installed capacity of non-dispatchable renewables. This increase is mostly due to PV, which is cheaper than wind. In addition, northern Chile has a very good solar resource which together with the daily solar cycle leads to strong synergy with energy storage systems with capacity for around half a day. However, it is worth to mention that the relative increase in wind generation capacity is higher in the scenario with no storage, as shown in
Figure 4a. This is probably due to wind being on average more evenly distributed during the day. This agrees with Moreno et al. [
10], who showed that the development of solar PV increases the value of pumped hydro projects more than wind energy. However, energy storage systems with capacity for more than a day lead to a relative increase in wind generation capacity due to the less regular wind resource profile.
Figure 5a shows that the emission factor of the system decreases drastically even in the scenario with no storage, reaching 22% of the value at 2020 by 2050. This is mainly due to the decommissioning of 3010 MW of coal generation during this period, representing 58% of 2020’s coal installed capacity. This also explains the large decrease of the emission factor in 2040, when 1300 MW of coal are decommissioned. This result underlines the importance of a planned decommissioning of the ageing coal power generators.
As the difference in emission factors between the scenarios is small compared to the overall decrease,
Figure 5b presents the variation of each scenario with respect to Scenario 0, which is considered here as a reference. The reason for the relatively small emission factor difference between Scenario 0 and the other scenarios (even though the difference in installed wind + PV generation is larger) is that, in absence of electricity storage, in Scenario 0 there is a rise in the installed capacity of dispatchable CSP, as shown in
Figure 4b. This, however, has an impact on the investment costs of the system (
Figure 6b), as CSP is a much more capital intensive technology than PV.
It is clear that the change of the emissions is not monotonic, as the problem represents a system with many different interacting constraints that leads to complex and unexpected behaviour. For example, for 2035, Scenario 2 presents a higher emission factor than Scenario 1, despite having more energy storage and PV generation capacity. The explanation for this particular case, is that the higher energy storage capacity is not enough to balance the extra PV generation by its own and CCGT has to run for more hours to balance the extra PV generation.
Figure 6a presents the costs of operating the system for one year, including fuel and other fixed and variable costs, whereas
Figure 6b shows the annualized costs of investments in every year. It must be noted that these costs are cumulative, because the annualized cost of an investment is applied until the end of its life, which explains the general increasing trend.
Figure 6a, on the other hand, presents a decreasing trend, which is explained mostly by the decrease of fuel consumption due to the increase in renewable generation penetration.
Figure 6b shows that after 2040, the scenarios with storage have lower investment costs than Scenario 0. This is due the possibility to include cheap renewable generation (as PV) backed by the existent storage. Scenario 0, on the other hand, must install more expensive renewable technologies, such as CSP, as it has not enough storage to back the operation of non-dispatchable renewable generation.
From the results, it is evident that Scenario 2 (30 h of storage) achieves only a small improvement compared with Scenario 1 (8 h of storage), despite having almost 4 times more storage capacity. This agrees with the results presented in
Section 3.2 which shows that the optimal energy storage size is around 9 h. Scenario 3 is the one that achieves the highest cost reduction with respect to Scenario 0, reaching an 18% decrease in operational cost and a 19% in accumulated investment by 2050.
As Scenarios 1, 2 and 3 consider storage to be given, the difference in costs with Scenario 0 represents the maximum cost that energy storage can have in order to make the system at least as cheap as the case without storage. Scenario 1 is analysed to find this maximum cost of storage assuming an energy storage system cost per MWh of capacity (no additional cost per power capacity) and another with cost per MW (zero cost of additional energy capacity).
Table 7 presents the maximum investment costs of storage for these two cases on an annual basis. It shows that in order to be economically attractive to install the amount of storage in Scenario 1 in 2025 it has to cost less than 43 €/kWh, which is well below the predictions of long term utility battery storage for 2025 (350 €/kWh [
39] 530 €/kWh [
40]). Although this cost could be achieved with pumped hydro [
41], the availability of the cheapest hydro resource is located in the south, while the main requirement of storage is in the north, where current cost estimates for this technology are around 1400 €/kW (although cost estimates are around 10 €/kWh on an energy basis) [
13]. Costs for storage added after 2035 is probably achievable, however, the benefits calculated for these years consider that cheaper storage was installed in the previous years.
This analysis shows that it is not realistic to achieve the rates of storage deployment presented in these scenarios. A more realistic approach with real storage technologies costs included in the optimisation must be analysed.
3.2. Scenarios 4 and 5
In contrast with Scenarios 1, 2 and 3, Scenarios 4 and 5 include the energy storage as well as the transmission capacity (only Scenario 5) in the optimization problem. For these scenarios, storage deployment starts after 2040 when PTES investment costs are expected to reach 500 €/kW according to
Table 6. The optimal amount of storage in each node for year 2050 is presented in
Table 8.
Table 8 confirms that energy storage presents higher value in supporting solar generation (PV) rather than wind, as the storage capacity concentrates in the sunniest northern nodes (Node 1 and 2) and no storage is installed in Node 4, the node with lowest solar and highest wind resources. Also, it shows that the optimal energy capacity for storage is around 9 h but shows a difference between the optimal energy storage capacity of Node 1 and Nodes 2 and 3. This difference is due to the different energy demand profiles. The demand in Nodes 2 and 3 is dominated by residential consumers and usually peaks around 21:00 to 23:00 and decreases sharply during the night (01:00 to 06:00). This means, that in Nodes 2 and 3, a 7–8 h storage capacity is enough to shift the solar energy production peak from 14:00 to the late evening peak. In Node 1, on the other hand, demand is dominated by the mining industry and is comparatively flatter and does not have the sudden decrease at night, which means that the energy stored during the day has to be retrieved over a longer period.
Scenario 5 also includes transmission expansion in the optimization. The result of this transmission expansion optimization is presented in
Table 9 up to the year 2050. As expected, a cheaper cost of transmission investment tends to increase the expansion of the transmission system. However, this expansion takes effect only after 2045 and concentrates in the line connecting Nodes 2 and 3, which is used mainly to transfer cheap solar PV from the northern part of the former SIC to the main consumption point in central Chile and under a cost of 550,000 €/km should more than double. The connection between Nodes 1 and 2, is not expected to increase, as Node 2 has enough PV potential to supply Node 3 and there is no need to send energy from Node 1 to Node 3.
Figure 7a presents the evolution of the installed capacity of PV and wind generation, while
Figure 7b presents the trend of the energy generated by these technologies for Scenarios 4, 5a and 5b, with Scenario 0 as reference. If comparing
Figure 7 with the results for the first three scenarios presented in
Figure 3, it is clear that the installed capacity of PV and wind increases less. It is interesting to note that the installed capacity of non-dispatchable renewables in Scenarios 4 and 5 in 2050 is similar to the installed capacity in Scenarios 1, 2 and 3 in 2035. This shows that the ability to integrate PV and wind generation in the energy system is related to the amount of energy storage.
Figure 8a presents the absolute emission factor of the system for the different scenarios, while
Figure 8b presents their evolution relative to Scenario 0. Similarly to
Figure 5a, it is evident that the general decreasing trend is driven by the decommissioning of ageing coal generation. In contrast to Scenarios 1 to 3, this figure shows that Scenarios 4 and 5 have relatively higher emissions than Scenario 0. This is counter-intuitive, especially for Scenario 4, as it has the same transmission expansion than Scenario 0 but also has the option of installing energy storage, which allows an increase in the installed capacity of PV and wind. However, as the solar resource is particularly good in northern Chile, CSP with thermal storage becomes competitive with conventional options and is installed instead.
Again, it can be seen that the change of the emissions is not monotonic, due to the many different interacting constraints. For example, in 2040 Scenario’s 4 emission factor decreases with respect to Scenario 0 but in 2050 it increases. The decrease of the emission factor in 2040 comes from the fact that in Scenario 0, the absence of storage in Node 2 causes 600 MW more CCGT to be installed in Node 3, in contrast to Scenario 4, where PV plus energy storage in Node 3 is installed. In 2050, on the other hand, it is cheaper for the system in Scenario 4 to operate with PV with storage and coal than with extra CSP, so there are more emissions that in Scenario 0 are avoided by installing a higher amount of more expensive CSP.
Figure 9a presents the costs of operating the system for one year, including fuel and other fixed and variable costs, whereas
Figure 9b shows the cumulated annualized costs of investments in every year. The trends of both figures are similar to those in
Figure 6. However, if compared with Scenarios 1, 2 and 3, the cost reductions in Scenarios 4 and 5 are lower. This is especially evident in the investment costs, as in this case there is a cost for installing energy storage and for expanding the transmission system (Scenario 5). In the case of the operational cost, the decrease is comparatively lower as the amount of total installed energy storage is lower, meaning that more fuel has to be burned to meet the demand. However, there is still an important cost reduction with respect to Scenario 0. In particular, the most realistic of the scenarios (Scenario 5b) reaches a 6% decrease of the annual system operation cost and accumulated investment cost by 2050 compared to Scenario 0.
The previous results and analysis have mainly assessed the achievable scenarios of non-dispatchable renewable generation and emissions at a country level.
Figure 10 complements that analysis by presenting the geographical distribution of the energy generation of the different technologies for four of the analysed scenarios by 2050. Although in all scenarios the total annual generated solar energy represents around 50% of the total energy generated in that year, the most obvious difference between the scenarios is the relative participation of PV and CSP generation. As mentioned previously, a higher amount of energy storage in the grid shifts the solar installed capacity from CSP to PV, as a combination of PV plus a PTES-like storage system is cheaper than CSP with molten salt storage.
According to the model, for all the analysed scenarios, the 70% renewable generation goal by 2050 is reached. Even more, 70% is reached in most of the scenarios without considering hydroelectric energy, as shown in
Table 10. Despite being in accordance with results found by Munoz et al. [
5], this result is probably a slight overestimation of the total amount of non-dispatchable renewable generation achievable under these scenarios.
The main source of possible overestimation of renewable generation integration in the current linear optimization model is the lack of a constraint to limit the minimum operational range of conventional generation such as coal and CCGT, which overestimates the capacity of these technologies to back changes in non-dispatchable renewable generation. Also, the current nodal resolution of the model does not allow to assess possible local constraints that could lead to transmission bottlenecks in renewable-resource rich clusters located at a certain distance from the main transmission lines. In any case, although it is expected that the inclusion of these missing features would decrease the total amount of renewables for a given scenario, it also is expected to increase the value of storage in the grid.
Another feature that determines the results of this model is that as every period is run independently, the system is agnostic of the demand and prices variation in the future. This assumption usually leads to less economically optimal system configurations but is probably more realistic due to the uncertainty in long-term fuel price and technology cost predictions.
Finally, the fact that transmission can be expanded in a continuous way, instead of in large discrete steps, promotes earlier transmission expansion. This also could lead to an overestimation of non-dispatchable renewable generation, because as shown in
Figure 7a, a delay in the transmission expansion causes a decrease in PV and wind penetration.