Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany—A Remote Sensing-Based Data Set for Wind Energy Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. Digital Elevation Data
2.3. lidar Data
2.4. Data Evaluation
3. Results
3.1. Diurnal and Monthly Investigation
3.2. Availability Maps
3.3. Spatial Availability Distribution with Regard to Weather Patterns
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FGW e.V. (Ed.) Teil 6 (TR 6). Bestimmung von Windpotenzial und Energieerträgen, revision 10th ed.; Technische Richtlinien für Windenergieanlagen, Fördergesellschaft Windenergie und andere Dezentrale Energien: Berlin, Germany, 2017. [Google Scholar]
- Measnet. Evaluation of Site Specific Wind Conditions V2. 2016. Available online: http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf (accessed on 22 May 2020).
- Bundesnetzagentur. Veröffentlichung von EEG-Registerdaten. Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html (accessed on 4 May 2020).
- Lee, J.; Kim, D.R.; Lee, K.S. Optimum Hub Height of a Wind Turbine for Maximizing Annual Net Profit. Energy Convers. Manag. 2015, 100, 90–96. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Pang, X. Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering Blade Length and Hub Height. Appl. Sci. 2018, 8, 1202. [Google Scholar] [CrossRef] [Green Version]
- Ryberg, D.S.; Caglayan, D.G.; Schmitt, S.; Linßen, J.; Stolten, D.; Robinius, M. The Future of European Onshore Wind Energy Potential: Detailed Distribution and Simulation of Advanced Turbine Designs. Energy 2019, 182, 1222–1238. [Google Scholar] [CrossRef]
- Lange, J.; Mann, J.; Berg, J.; Parvu, D.; Kilpatrick, R.; Costache, A.; Chowdhury, J.; Siddiqui, K.; Hangan, H. For Wind Turbines in Complex Terrain, the Devil Is in the Detail. Environ. Res. Lett. 2017, 12, 094020. [Google Scholar] [CrossRef]
- Alfredsson, P.H.; Segalini, A. Introduction Wind Farms in Complex Terrains: An Introduction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375. [Google Scholar] [CrossRef]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling Surface Wind Predictions from Numerical Weather Prediction Models in Complex Terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar]
- Mann, J.; Angelou, N.; Arnqvist, J.; Callies, D.; Cantero, E.; Arroyo, R.C.; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J. Complex Terrain Experiments in the New European Wind Atlas. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375. [Google Scholar] [CrossRef]
- Solbakken, K.; Birkelund, Y. Evaluation of the Weather Research and Forecasting (WRF) Model with Respect to Wind in Complex Terrain. J. Phys. Conf. Ser. 2018, 1102, 012011. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.B. LiDAR Technology for Wind Energy Potential Assessment: Demonstration and Validation at a Site around Lake Erie. Energy Convers. Manag. 2017, 144, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Chaurasiya, P.K.; Warudkar, V.; Ahmed, S. An Onsite Demonstration and Validation of LiDAR Technology for Wind Energy Resource Assessment. Int. J. Sustain. Energy 2019, 38, 701–715. [Google Scholar] [CrossRef]
- Hämäläinen, K.; Saltikoff, E.; Hyvärinen, O.; Vakkari, V.; Niemelä, S. Assessment of Probabilistic Wind Forecasts at 100 m Above Ground Level Using Doppler lidar and Weather Radar Wind Profiles. Mon. Weather Rev. 2020, 148, 1321–1334. [Google Scholar] [CrossRef]
- Basse, A.; Pauscher, L.; Callies, D. Improving Vertical Wind Speed Extrapolation Using Short-Term lidar Measurements. Remote Sens. 2020, 12, 1091. [Google Scholar] [CrossRef] [Green Version]
- Aitken, M.L.; Rhodes, M.E.; Lundquist, J.K. Performance of a Wind-Profiling lidar in the Region of Wind Turbine Rotor Disks. J. Atmos. Ocean. Technol. 2012, 29, 347–355. [Google Scholar] [CrossRef]
- Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A. Assessment and Optimization of lidar Measurement Availability for Wind Turbine Control. In Proceedings of the European Wind Energy Association Conference (EWEA 2014), Barcelona, Spain, 10–13 March 2014; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014; pp. 10–13. [Google Scholar]
- Boquet, M.; Royer, P.; Cariou, J.P.; Machta, M.; Valla, M. Simulation of Doppler lidar Measurement Range and Data Availability. J. Atmos. Ocean. Technol. 2016, 33, 977–987. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A Novel Approach to Fog/Low Stratus Detection Using Meteosat 8 Data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Cermak, J.; Eastman, R.M.; Bendix, J.; Warren, S.G. European Climatology of Fog and Low Stratus Based on Geostationary Satellite Observations. Q. J. R. Meteorol. Soc. 2009, 135, 2125–2130. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. Detecting Ground Fog from Space—A Microphysics Based Approach. Int. J. Remote Sens. 2011, 32, 3345–3371. [Google Scholar] [CrossRef]
- Schulz, H.M.; Thies, B.; Cermak, J.; Bendix, J. 1 Km Fog and Low Stratus Detection Using Pan-Sharpened MSG SEVIRI Data. Atmos. Meas. Tech. 2012, 5, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Egli, S.; Thies, B.; Bendix, J. A Hybrid Approach for Fog Retrieval Based on a Combination of Satellite and Ground Truth Data. Remote Sens. 2018, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Egli, S.; Thies, B.; Bendix, J. A Spatially Explicit and Temporally Highly Resolved Analysis of Variations in Fog Occurrence over Europe. Q. J. R. Meteorol. Soc. 2019, 145, 1721–1740. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. A. J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar]
- Canadillas, B.; Westerhellweg, A.; Neumann, T. Testing the Performance of a Ground-Based Wind LiDAR System. One Year Intercomparison at the Offshore Platform FIN01. DEWI Mag. 2011, 38, 58–64. [Google Scholar]
- Hess, P.; Brezowsky, H. Katalog Der Großwetterlagen Europas 1881–1976. 3. Verbesserte Und Ergänzte Aufl. Ber. Dtsch. Wetterd. 1977, 113, 1–140. [Google Scholar]
- Pichugina, Y.L.; Banta, R.M.; Bonin, T.; Brewer, W.A.; Choukulkar, A.; McCarty, B.J.; Baidar, S.; Draxl, C.; Fernando, H.J.S.; Kenyon, J.; et al. Spatial Variability of Winds and HRRR–NCEP Model Error Statistics at Three Doppler-lidar Sites in the Wind-Energy Generation Region of the Columbia River Basin. J. Appl. Meteorol. Climatol. 2019, 58, 1633–1656. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rösner, B.; Egli, S.; Thies, B.; Beyer, T.; Callies, D.; Pauscher, L.; Bendix, J. Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany—A Remote Sensing-Based Data Set for Wind Energy Planning. Energies 2020, 13, 3859. https://doi.org/10.3390/en13153859
Rösner B, Egli S, Thies B, Beyer T, Callies D, Pauscher L, Bendix J. Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany—A Remote Sensing-Based Data Set for Wind Energy Planning. Energies. 2020; 13(15):3859. https://doi.org/10.3390/en13153859
Chicago/Turabian StyleRösner, Benjamin, Sebastian Egli, Boris Thies, Tina Beyer, Doron Callies, Lukas Pauscher, and Jörg Bendix. 2020. "Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany—A Remote Sensing-Based Data Set for Wind Energy Planning" Energies 13, no. 15: 3859. https://doi.org/10.3390/en13153859
APA StyleRösner, B., Egli, S., Thies, B., Beyer, T., Callies, D., Pauscher, L., & Bendix, J. (2020). Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany—A Remote Sensing-Based Data Set for Wind Energy Planning. Energies, 13(15), 3859. https://doi.org/10.3390/en13153859