The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Microorganisms and Wastewater
2.3. Analytical Methods
Cathodic reduction: O2 + 4H+ + 4e− → 2H2O
Global reaction: C6H12O6 + 6O2 → 6CO2 + H2O
3. Results and Discussion
3.1. Influence of the Flow Rate on Exerted Current Density and COD Removal
3.2. Influence of the Flow Rate on the CE
3.3. Performance Modelling of the MFC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Logan, B.E.; Hamelers, H.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, T.; Lombardelli, G. Energy sustainability of Microbial Fuel Cell (MFC): A case study. J. Power Sour. 2017, 356, 438–447. [Google Scholar] [CrossRef]
- Strik, D.P.B.T.B.; Hamelers, V.M.H.; Snel, J.F.H.; Buisman, C.J.N. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res. 2008, 32, 870–876. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current updates on waste to energy (WtE) technologies: A review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- De Lucas, A.; Rodríguez, L.; Villasenor, J.; Fernandez-Morales, F.J. Biodegradation kinetics of stored wastewater substrates by a mixed microbial culture. Biochem. Eng. J. 2005, 26, 191–197. [Google Scholar] [CrossRef]
- De Lucas, A.; Rodríguez, L.; Villasenor, J.; Fernández, F. Influence of industrial discharges on the performance and population of a biological nutrient removal process. Biochem. Eng. J. 2007, 34, 51–61. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Piuleac, C.G.; Curteanu, S.; Rodrigo, M.A.; Sáez, C.; Fernández, F. Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. Open Chem. 2013, 11, 1213–1224. [Google Scholar] [CrossRef]
- Sandoval, O.G.M.; Trujillo, G.C.D.; Orozco, A.E.L. Amorphous silica waste from a geothermal central as an adsorption agent of heavy metal ions for the regeneration of industrial pre-treated wastewater. Water Resour. Ind. 2018, 20, 15–22. [Google Scholar] [CrossRef]
- Gutiérrez-Alfaro, S.; Rueda-Márquez, J.J.; Perales, J.A.; Manzano, M.A. Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration. Sci. Total. Environ. 2018, 619, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Van Der Bruggen, B.; Cornelis, G.; Vandecasteele, C.; Devreese, I. Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 2005, 175, 111–119. [Google Scholar] [CrossRef]
- Üstün, G.E.; Solmaz, S.K.A.; Birgul, A. Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange—A case study. Resour. Conserv. Recycl. 2007, 52, 425–440. [Google Scholar] [CrossRef]
- Gude, V.G. Energy and water autarky of wastewater treatment and power generation systems. Renew. Sustain. Energy Rev. 2015, 45, 52–68. [Google Scholar] [CrossRef]
- Gude, V.G. Wastewater treatment in microbial fuel cells—An overview. J. Clean. Prod. 2016, 122, 287–307. [Google Scholar] [CrossRef]
- Fernandez-Morales, F.J.; Castro, M.; Rodrigo, M.A.; Cañizares, P. Reduction of aeration costs by tuning a multi-set point on/off controller: A case study. Control. Eng. Pract. 2011, 19, 1231–1237. [Google Scholar] [CrossRef]
- García-Gen, S.; Rodriguez, J.; Lema, J.M. Control strategy for maximum anaerobic co-digestion performance. Water Res. 2015, 80, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Infantes, D.; Del Campo, A.G.; Villasenor, J.; Fernández, F. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energy 2011, 36, 15595–15601. [Google Scholar] [CrossRef]
- Fernández, M.D.L.A.; Sanromán, M.D.L.Á.; Marks, S.; Makinia, J.; Del Campo, A.G.; Rodrigo, M.A.; Fernandez-Morales, F.J.; Morales, F.J.F. A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. Bioresour. Technol. 2016, 200, 396–404. [Google Scholar] [CrossRef]
- Bose, D.; Dhawan, H.; Kandpal, V.; Vijay, P.; Gopinath, M. Bioelectricity generation from sewage and wastewater treatment using two-chambered microbial fuel cell. Int. J. Energy Res. 2018, 42, 4335–4344. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.; Hai, F.I. Microbial fuel cell is emerging as a versatile technology: A review on its possible applications, challenges and strategies to improve the performances. Int. J. Energy Res. 2017, 42, 369–394. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Reproducibility and robustness of microbial fuel cells technology. J. Power Sour. 2019, 412, 640–647. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Fernandez-Morales, F.J.; Rodrigo, M.A. A Critical View of Microbial Fuel Cells: What Is the Next Stage? ChemSusChem 2018, 11, 4183–4192. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Lee, H.-S.; Chae, J. Miniaturizing microbial fuel cells for potential portable power sources: Promises and challenges. Microfluid. Nanofluid. 2012, 13, 353–381. [Google Scholar] [CrossRef]
- Babanova, S.; Jones, J.; Phadke, S.; Lu, M.; Angulo, C.; Garcia, J.; Carpenter, K.; Cortese, R.; Chen, S.; Phan, T.; et al. Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environ. Res. 2019, 92, 60–72. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Zhou, X.; Liang, P.; Zhang, X.; Jiang, Y.; Huang, X. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016, 98, 396–403. [Google Scholar] [CrossRef]
- Lu, M.; Chen, S.; Babanova, S.; Phadke, S.; Salvacion, M.; Mirhosseini, A.; Chan, S.; Carpenter, K.; Cortese, R.; Bretschger, O. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. J. Power Sour. 2017, 356, 274–287. [Google Scholar] [CrossRef]
- Feng, Y.; He, W.; Liu, J.; Wang, X.; Qu, Y.; Ren, N. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour. Technol. 2014, 156, 132–138. [Google Scholar] [CrossRef]
- Bond, D.R.; Lovley, D. Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Schröder, U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9, 2619–2629. [Google Scholar] [CrossRef]
- Min, B.; Kim, J.R.; Oh, S.; Regan, J.M.; Logan, B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef]
- Jung, S. Impedance analysis of Geobacter sulfurreducens PCA, Shewanella oneidensis MR-1, and their coculture in bioeletrochemical systems. Int. J. Electrochem. Sci. 2012, 7, 11091–11100. [Google Scholar]
- Ringeisen, B.R.; Henderson, E.; Wu, P.K.; Pietron, J.; Ray, R.; Little, B.; Biffinger, J.C.; Jones-Meehan, J.M. High Power Density from a Miniature Microbial Fuel Cell UsingShewanella oneidensisDSPEnviron. Sci. Technol. 2006, 40, 2629–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samsudeen, N.; Radhakrishnan, T.; Matheswaran, M. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour. Technol. 2015, 195, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Wahid, Z.A.; Din, M.F.M. Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review. Int. J. Energy Res. 2015, 39, 1048–1067. [Google Scholar] [CrossRef]
- Rabaey, K.; Lissens, G.; Siciliano, S.D.; Verstraete, W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25, 1531–1535. [Google Scholar] [CrossRef]
- Alipanahi, R.; Rahimnejad, M. Effect of different ecosystems on generated power in sediment microbial fuel cell. Int. J. Energy Res. 2018, 42, 4891–4897. [Google Scholar] [CrossRef]
- Fernández, F.; Sánchez-Arias, V.; Villasenor, J.; Rodríguez, L. Evaluation of carbon degradation during co-composting of exhausted grape marc with different biowastes. Chemosphere 2008, 73, 670–677. [Google Scholar] [CrossRef]
- Fernandez-Morales, F.J.; Villasenor, J.; Infantes, D. Modeling and monitoring of the acclimatization of conventional activated sludge to a biohydrogen producing culture by biokinetic control. Int. J. Hydrog. Energy 2010, 35, 10927–10933. [Google Scholar] [CrossRef]
- Hummert, S.; Bohl, K.; Basanta, D.; Deutsch, A.; Werner, S.; Theißen, G.; Schroeter, A.; Schuster, S. Evolutionary game theory: Cells as players. Mol. BioSyst. 2014, 10, 3044–3065. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, J.; Zhu, X.; Ye, D.; Fu, Q.; Liao, Q. Startup Performance and Anodic Biofilm Distribution in Continuous-Flow Microbial Fuel Cells with Serpentine Flow Fields: Effects of External Resistance. Ind. Eng. Chem. Res. 2017, 56, 3767–3774. [Google Scholar] [CrossRef]
- Mateo, S.; D’Angelo, A.; Scialdone, O.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. The influence of sludge retention time on mixed culture microbial fuel cell start-ups. Biochem. Eng. J. 2017, 123, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-H.; Lin, H.-H.; Wen, S.; Lin, C.-W. Performance of trickling bed microbial fuel cell treating isopropyl alcohol vapor: Effects of shock-load and shut-down episodes. Chemosphere 2019, 224, 168–175. [Google Scholar] [CrossRef]
- Aelterman, P.; Versichele, M.; Marzorati, M.; Boon, N.; Verstraete, W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99, 8895–8902. [Google Scholar] [CrossRef]
- Behera, M.; Ghangrekar, M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour. Technol. 2009, 100, 5114–5121. [Google Scholar] [CrossRef]
- Sobieszuk, P.; Zamojska-Jaroszewicz, A.; Makowski, Ł. Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling. J. Power Sour. 2017, 371, 178–187. [Google Scholar] [CrossRef]
- Larrosa-Guerrero, A.; Scott, K.; Head, I.M.; Mateo, F.; Ginestá, A.; Godínez, C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89, 3985–3994. [Google Scholar] [CrossRef]
- Del Campo, A.G.; Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Short-term effects of temperature and COD in a microbial fuel cell. Appl. Energy 2013, 101, 213–217. [Google Scholar] [CrossRef]
- D’Angelo, A.; Mateo, S.; Scialdone, O.; Cañizares, P.; Fernandez-Morales, F.J.; Rodrigo, M.A. Optimization of the performance of an air-cathode MFC by changing solid retention time. J. Chem. Technol. Biotechnol. 2017, 92, 1746–1755. [Google Scholar] [CrossRef]
- Ledezma, P.; Greenman, J.; Ieropoulos, I. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresour. Technol. 2013, 134, 158–165. [Google Scholar] [CrossRef]
- Walter, X.A.; Forbes, S.; Greenman, J.; Ieropoulos, I. From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustain. Energy Technol. Assess. 2016, 14, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Yuan, Z.; Cui, M.; Han, H.; Shen, J. Study on electricity-generation characteristic of two-chambered microbial fuel cell in continuous flow mode. Int. J. Hydrogen Energy 2012, 37, 1067–1073. [Google Scholar] [CrossRef]
- Li, X.; Zhu, N.; Wang, Y.; Li, P.; Wu, P.; Wu, J. Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: Effects of HRT and non-precious metallic catalyst. Bioresour. Technol. 2013, 128, 454–460. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.-Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2013, 7, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Ragab, M.; Elawwad, A.; Abdel-Halim, H. Simultaneous power generation and pollutant removals using microbial desalination cell at variable operation modes. Renew. Energy 2019, 143, 939–949. [Google Scholar] [CrossRef]
- Mateo, S.; Fernandez-Morales, F.J.; Cañizares, P.; Rodrigo, M.A. Influence of the Cathode Platinum Loading and of the Implementation of Membranes on the Performance of Air-Breathing Microbial Fuel Cells. Electrocatalysis 2017, 8, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Logan, B.E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef]
- Christwardana, M.; Frattini, D.; Frattini, D.; Yoon, S.P.; Kwon, Y. Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst. Appl. Energy 2018, 222, 369–382. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Driving force behind electrochemical performance of microbial fuel cells fed with different substrates. Chemosphere 2018, 207, 313–319. [Google Scholar] [CrossRef]
- Jafary, T.; Ghoreyshi, A.A.; Najafpour, G.D.; Fatemi, S.; Rahimnejad, M. Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. Int. J. Energy Res. 2012, 37, 1539–1549. [Google Scholar] [CrossRef]
- Ren, H.; Torres, C.I.; Parameswaran, P.; Rittmann, B.E.; Chae, J. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length. Biosens. Bioelectron. 2014, 61, 587–592. [Google Scholar] [CrossRef]
- Ieropoulos, I.; Winfield, J.; Greenman, J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour. Technol. 2010, 101, 3520–3525. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Appl. Energy 2018, 225, 52–59. [Google Scholar] [CrossRef]
- Potrykus, S.; Kutt, F.; Nieznański, J.; Fernandez-Morales, F.J. Advanced Lithium-Ion Battery Model for Power System Performance Analysis. Energies 2020, 13, 2411. [Google Scholar] [CrossRef]
- Salar-Garcia, M.; Ortiz-Martínez, V.M.; Baicha, Z.; Ríos, A.D.L.; Hernández-Fernández, F. Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly. Energy 2016, 101, 113–120. [Google Scholar] [CrossRef]
- Mayor, L.R.; Camacho, J.V.; Morales, F.J.F. Operational Optimisation of Pilot Scale Biological Nutrient Removal at the Ciudad Real (Spain) Domestic Wastewater Treatment Plant. Water Air Soil Pollut. 2004, 152, 279–296. [Google Scholar] [CrossRef]
- De Lucas, A.; Rodríguez, L.; Villaseñor, J.; Fernández, F. Fermentation of agro-food wastewaters by activated sludge. Water Res. 2007, 41, 1635–1644. [Google Scholar] [CrossRef]
- Gilcreas, F.W. Future of standard methods for the examination of water and wastewater. Health Lab. Sci. 1967, 4, 137. [Google Scholar]
- Mateo, S.; Rodrigo, M.A.; Fonseca, L.P.; Cañizares, P.; Fernandez-Morales, F.J. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell. Biotechnol. Prog. 2015, 31, 900–907. [Google Scholar] [CrossRef]
- Mateo, S.; Del Campo, A.G.; Lobato, J.; Rodrigo, M.A.; Cañizares, P.; Fernandez-Morales, F.J. Long-term effects of the transient COD concentration on the performance of microbial fuel cells. Biotechnol. Prog. 2016, 32, 883–890. [Google Scholar] [CrossRef]
- Gude, V. Microbial fuel cells for wastewater treatment and energy generation. In Microbial Electrochemical and Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2016; pp. 247–285. [Google Scholar] [CrossRef]
- Vigolo, D.; Al-Housseiny, T.T.; Shen, Y.; Akinlawon, F.O.; Al-Housseiny, S.T.; Hobson, R.K.; Sahu, A.; Bedkowski, K.I.; DiChristina, T.J.; Stone, H.A. Flow dependent performance of microfluidic microbial fuel cells. Phys. Chem. Chem. Phys. 2014, 16, 12535–12543. [Google Scholar] [CrossRef]
- Scott, K.; Yu, E.; Ghangrekar, M.; Erable, B.; Duţeanu, N. Biological and Microbial Fuel Cells. In Comprehensive Renewable Energy; Elsevier: Philadelphia, PA, USA, 2012; pp. 277–300. [Google Scholar]
- Ma, D.; Jiang, Z.-H.; Lay, C.-H.; Zhou, D. Electricity generation from swine wastewater in microbial fuel cell: Hydraulic reaction time effect. Int. J. Hydrogen Energy 2016, 41, 21820–21826. [Google Scholar] [CrossRef]
- Juang, D.F.; Yang, P.C.; Kuo, T.H. Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int. J. Environ. Sci. Technol. 2012, 9, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Nguyen, V.K.; Park, S.; Yu, J.; Lee, T. Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresour. Technol. 2018, 258, 57–63. [Google Scholar] [CrossRef]
- He, Z.; Minteer, S.D.; Angenent, L.T. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environ. Sci. Technol. 2005, 39, 5262–5267. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Logan, B.E. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl. Microbiol. Biotechnol. 2012, 93, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yao, L.; Kong, L.; Liu, H. Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour. Technol. 2008, 99, 1650–1655. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Scott, K.; Curtis, T.P.; Head, I.M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem. Eng. J. 2010, 156, 40–48. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing. Environ. Sci. Technol. 2006, 40, 2426–2432. [Google Scholar] [CrossRef]
Component | Concentration (mg/L) |
---|---|
Fructose | 161.0 |
Glucose | 161.0 |
NaHCO3 | 111.0 |
(NH4)2SO4 | 74.2 |
KH2PO4 | 44.5 |
MgCl2 | 37.1 |
CaCl2 | 30.7 |
(NH4)2 Fe (SO4)2 | 3.1 |
When | Pmax (mW/m2) | Jmax (mA/m2) |
---|---|---|
Before the tests | 16.5 | 122 |
After the tests | 17.7 | 130 |
Polarization Curve | Parameter | |||||
---|---|---|---|---|---|---|
b | m | n | Correlation Coefficient | |||
(V Decades−1) | (Ω) | (V) | (A−1) | R2 | ||
Before the tests | 0.3 | 0.005 | 1.86 | 0.005 | 121.2 | 0.999 |
After the tests | 0.3 | 0.005 | 1.52 | 0.005 | 115.4 | 0.999 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potrykus, S.; Mateo, S.; Nieznański, J.; Fernández-Morales, F.J. The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model. Energies 2020, 13, 4735. https://doi.org/10.3390/en13184735
Potrykus S, Mateo S, Nieznański J, Fernández-Morales FJ. The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model. Energies. 2020; 13(18):4735. https://doi.org/10.3390/en13184735
Chicago/Turabian StylePotrykus, Szymon, Sara Mateo, Janusz Nieznański, and Francisco Jesús Fernández-Morales. 2020. "The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model" Energies 13, no. 18: 4735. https://doi.org/10.3390/en13184735
APA StylePotrykus, S., Mateo, S., Nieznański, J., & Fernández-Morales, F. J. (2020). The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model. Energies, 13(18), 4735. https://doi.org/10.3390/en13184735