Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks
Abstract
:1. Introduction
- Prior to the NN forecast, the NN training period, which is initially set to a very large window, is filtered by means of a structural break analysis method and periods where prices significantly differ from those prior to the forecasting period (i.e., most recent prices) are discarded.
- Furthermore, the hourly trends in the actual forecasting period according to market regime related variables are evaluated via a K-means clustering procedure. The hours of the initial NN calibration period where the assigned cluster coincides with that of the hours in the forecasting period are included in the previously filtered calibration period by the structural break analysis method. This combination of training window selection techniques is carried out ex-ante and therefore provides a dynamic calibration dataset.
- The proposed set of methodologies is backtested on the real and full-scale Iberian electricity market of 2017. The performance of this approach is compared with that of other well-recognised forecasting models.
2. Proposed Methodology
2.1. Cost-Production Optimisation Model
2.2. Period Selection
2.2.1. Structural Breaks
2.2.2. Hourly Clustering
2.2.3. Neural Network Validation Set
2.3. Artificial Neural Network Model
- Expected values of demand, wind and solar generation
- Expected mean temperature in the Iberian Peninsula
- Two dummy variables corresponding to working days or a Sunday/holiday, thus Saturdays would correspond to both dummy variables being false
- Actual electricity market prices with the following lags: one day, two days, one week and two weeks
- Commodity related month-ahead forward prices: API2 coal, NBP natural gas and European CO2 emission allowances
- Day-ahead Iberian electricity market futures
- Fundamental model output variables: market-clearing prices; and coal, CCGT and hydro production levels.
2.4. Model Performance Metrics and Evaluation Criteria
3. Case Studies, Results and Discussion
- Stage 0: A base hybrid fundamental-econometric model without filtering any periods and variables and using 120 days of calibration data, although a limited filtering procedure in winter 2017 reduced this data length by roughly 70%. This coincides with the Proposed Model 2 that was presented in [19].
- Stage 1: 13 months of calibration data are used and these are filtered via the structural breaks technique.
- Stage 2: The K-means hourly clustering procedure is added to the calibration period selection method.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bello, A.; Reneses, J.; Muñoz, A.; Delgadillo, A. Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques. Int. J. Forecast. 2016, 32, 966–980. [Google Scholar] [CrossRef]
- Contreras, J.; Espínola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020. [Google Scholar] [CrossRef]
- Cipriano, A.; Lira, F.; Núñez, F.; Muñoz, C. Short-term forecasting of electricity prices in the Colombian electricity market. IET Gener. Transm. Distrib. 2009, 3, 980–986. [Google Scholar] [CrossRef]
- Sánchez De La Nieta, A.A.; González, V.; Contreras, J. Portfolio decision of short-term electricity forecasted prices through stochastic programming. Energies 2016, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Catalão, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Short-term electricity prices forecasting in a competitive market: A neural network approach. Electr. Power Syst. Res. 2007, 77, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Amjady, N.; Daraeepour, A.; Keynia, F. Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. IET Gener. Transm. Distrib. 2010, 4, 432. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Chowdhury, N.A. Mid-term electricity market clearing price forecasting using multiple support vector machine. IET Gener. Transm. Distrib. 2014, 8, 1572–1582. [Google Scholar] [CrossRef]
- Monteiro, C.; Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Conde, P. Short-term price forecasting models based on artificial neural networks for intraday sessions in the Iberian electricity market. Energies 2016, 9, 721. [Google Scholar] [CrossRef]
- Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. Int. J. Forecast. 2016, 32, 896–913. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebifar, R.; Sheikh-El-Eslami, M.K.; Kheirollahi, R. Point and interval forecasting of real-time and day-ahead electricity prices by a novel hybrid approach. IET Gener. Transm. Distrib. 2017, 11, 2173–2183. [Google Scholar] [CrossRef]
- Bento, P.M.R.; Pombo, J.A.N.; Calado, M.R.A.; Mariano, S.J.P.S. A bat optimized neural network and wavelet transform approach for short-term price forecasting. Appl. Energy 2018, 210, 88–97. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z. Forecast the electricity price of U.S. using a wavelet transform-based hybrid model. Energy 2020, 193, 116704. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Timmermann, A. Selection of estimation window in the presence of breaks. J. Econom. 2007, 137, 134–161. [Google Scholar] [CrossRef]
- Marcjasz, G.; Serafin, T.; Weron, R. Selection of calibration windows for day-ahead electricity price forecasting. Energies 2018, 11, 2364. [Google Scholar] [CrossRef] [Green Version]
- Avci, E.; Ketter, W.; van Heck, E. Managing electricity price modeling risk via ensemble forecasting: The case of Turkey. Energy Policy 2018, 123, 390–403. [Google Scholar] [CrossRef]
- Chen, D.; Bunn, D.W. Analysis of the nonlinear response of electricity prices to fundamental and strategic factors. IEEE Trans. Power Syst. 2010, 25, 595–606. [Google Scholar] [CrossRef]
- Paraschiv, F.; Fleten, S.E.; Schürle, M. A spot-forward model for electricity prices with regime shifts. Energy Econ. 2015, 47, 142–153. [Google Scholar] [CrossRef] [Green Version]
- De Marcos, R.A.; Bello, A.; Reneses, J. Short-term electricity price forecasting with a composite fundamental-econometric hybrid methodology. Energies 2019, 12, 1067. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.; Senjyu, T.; Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 2006, 47, 2128–2142. [Google Scholar] [CrossRef]
- Karakatsani, N.V.; Bunn, D.W. Forecasting electricity prices: The impact of fundamentals and time-varying coefficients. Int. J. Forecast. 2008, 24, 764–785. [Google Scholar] [CrossRef]
- Bello, A.; Bunn, D.W.; Reneses, J.; Muñoz, A. Parametric density recalibration of a fundamental market model to forecast electricity prices. Energies 2016, 9, 959. [Google Scholar] [CrossRef]
- Bello, A.; Bunn, D.W.; Reneses, J.; Muñoz, A. Medium-term probabilistic forecasting of electricity prices: A hybrid approach. IEEE Trans. Power Syst. 2017, 32, 334–343. [Google Scholar] [CrossRef]
- González, V.; Contreras, J.; Bunn, D.W. Forecasting power prices using a hybrid fundamental-econometric model. IEEE Trans. Power Syst. 2012, 27, 363–372. [Google Scholar] [CrossRef]
- De Marcos, R.A.; Bello, A.; Reneses, J. Electricity price forecasting in the short term hybridising fundamental and econometric modelling. Electr. Power Syst. Res. 2019, 167, 240–251. [Google Scholar] [CrossRef]
- Transparency Platform of the Spanish System Operator. Available online: https://www.esios.ree.es/en (accessed on 13 November 2018).
- Transparency Platform of the ENTSO-E. Available online: https://transparency.entsoe.eu/ (accessed on 11 September 2018).
- Zeileis, A.; Kleiber, C.; Walter, K.; Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 2003, 44, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Cheikh, M.; Jarboui, B.; Loukil, T.; Siarry, P. A method for selecting Pareto optimal solutions in multiobjective optimization. J. Inform. Math. Sci. 2010, 2, 51–62. [Google Scholar]
- Bello, A.; Reneses, J.; Muñoz, A. Medium-term probabilistic forecasting of extremely low prices in electricity markets: Application to the Spanish case. Energies 2016, 9, 193. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Weron, R.; Misiorek, A. Short-term electricity price forecasting with time series models: A review and evaluation. In Complex Electricity Markets; IEPŁ & SEP: Łódz, Poland, 2006; pp. 231–254. [Google Scholar]
- Uniejewski, B.; Weron, R.; Ziel, F. Variance stabilizing transformations for electricity spot price forecasting. IEEE Trans. Power Syst. 2017, 33, 2219–2229. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Jenkins, G.; Reinsel, G.C. Time Series Analysis—Forecasting and Control, Fourth Edition; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Pankratz, A. Building dynamic regression models: Model identification. In Forecasting with Dynamic Regression Models; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 935, pp. 167–201. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. Stat. Soc. Ser. B. 1964, 26, 211–252. [Google Scholar] [CrossRef]
Model | Winter | Spring | Summer | Autumn | Entire 2017 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | |
PMS0—Base model [19] | 11.68 | 4.756 | 5.479 | 8.106 | 2.882 | 3.407 | 4.450 | 2.070 | 2.517 | 6.812 | 3.453 | 4.129 | 7.744 | 3.282 | 3.874 |
PMS1—Structural breaks | 11.02 | 4.266 | 4.917 | 7.706 | 2.487 | 2.960 | 4.501 | 2.063 | 2.509 | 6.237 | 3.150 | 3.820 | 7.348 | 2.984 | 3.543 |
PMS2—Hourly clustering | 10.05 | 4.133 | 4.785 | 7.303 | 2.433 | 2.892 | 4.467 | 2.045 | 2.504 | 6.284 | 3.139 | 3.818 | 7.012 | 2.930 | 3.492 |
BM1—½(PMS0 + BM2) [19] | 11.30 | 4.610 | 5.334 | 7.902 | 2.832 | 3.349 | 4.477 | 2.079 | 2.525 | 6.756 | 3.409 | 4.069 | 7.591 | 3.224 | 3.810 |
BM2—Pure NN [19] | 11.12 | 4.562 | 5.308 | 7.804 | 2.826 | 3.342 | 4.605 | 2.136 | 2.588 | 6.834 | 3.440 | 4.089 | 7.575 | 3.233 | 3.823 |
BM3—ARX [32] | 16.79 | 6.838 | 7.809 | 13.58 | 4.765 | 5.552 | 7.153 | 3.262 | 3.885 | 10.51 | 5.066 | 6.055 | 11.99 | 4.972 | 5.814 |
BM4—W. ARX [15] | 16.27 | 6.390 | 7.314 | 13.21 | 4.500 | 5.268 | 7.015 | 3.211 | 3.857 | 10.14 | 4.880 | 5.874 | 11.64 | 4.736 | 5.568 |
BM5—SARIMAX | 15.06 | 8.113 | 10.84 | 9.293 | 4.150 | 5.585 | 5.097 | 2.473 | 4.531 | 7.654 | 4.454 | 4.959 | 9.248 | 4.780 | 6.460 |
BM6—Naïve approach | 25.93 | 10.53 | 11.48 | 17.55 | 6.225 | 7.092 | 9.343 | 4.266 | 5.030 | 12.82 | 6.387 | 7.567 | 16.37 | 6.828 | 7.773 |
Model | Winter | Spring | Summer | Autumn | Overall |
---|---|---|---|---|---|
PMS0, BM1 & BM2 [19] | 36.67 | 120.0 | 120.0 | 120.0 | 99.17 |
PMS1 (Figure 3) | 152.9 | 237.0 | 324.7 | 300.5 | 254.2 |
PMS2 (Figure 4) | 288.8 | 324.5 | 344.7 | 348.1 | 326.7 |
Model Comparison | Winter | Spring | Summer | Autumn | Entire 2017 |
---|---|---|---|---|---|
PMS2 vs. PMS0 | −8.834 | −12.31 | −0.975 | −6.787 | −14.75 |
PMS2 vs. PMS1 | −2.903 | −3.199 | −1.833 | −0.436 | −3.917 |
PMS2 vs. BM1 | −6.528 | −8.042 | −2.883 | −5.726 | −11.29 |
PMS2 vs. BM2 | −6.316 | −11.36 | −3.262 | −6.877 | −13.18 |
PMS2 vs. BM3 | −21.54 | −28.70 | −22.94 | −21.69 | −44.76 |
PMS2 vs. BM4 | −18.78 | −26.37 | −21.18 | −19.59 | −40.67 |
PMS2 vs. BM5 | −21.21 | −17.96 | −4.454 | −16.85 | −29.70 |
PMS2 vs. BM6 | −34.44 | −33.17 | −27.75 | −28.66 | −58.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, R.A.d.; Bunn, D.W.; Bello, A.; Reneses, J. Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks. Energies 2020, 13, 5452. https://doi.org/10.3390/en13205452
Marcos RAd, Bunn DW, Bello A, Reneses J. Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks. Energies. 2020; 13(20):5452. https://doi.org/10.3390/en13205452
Chicago/Turabian StyleMarcos, Rodrigo A. de, Derek W. Bunn, Antonio Bello, and Javier Reneses. 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks" Energies 13, no. 20: 5452. https://doi.org/10.3390/en13205452
APA StyleMarcos, R. A. d., Bunn, D. W., Bello, A., & Reneses, J. (2020). Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks. Energies, 13(20), 5452. https://doi.org/10.3390/en13205452