Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System
Abstract
:1. Introduction
- To design and develop a unique visualization platform for the analysis of wind turbine data gathered by the SCADA system.
- To design and develop an efficient deep learning model for short term time-series prediction (with a time frame of a month).
- To perform a comparative analysis with existing statistical and machine learning approaches to measure the improvements.
2. Related Works
3. The Proposed Model
3.1. Exploratory Data Analysis
3.1.1. Dataset
3.1.2. Data Analysis
3.1.3. Cartesian Coordinates Analysis
3.1.4. Polar Coordinates Analysis
3.1.5. Cylindrical Coordinates Analysis
3.1.6. Wind Energy Generated Patterns
3.2. The Prediction
4. Experiments and Discussion
4.1. Train and Test Split
4.2. Performance Measures
4.3. Wind and Power Prediction
4.3.1. Wind Speed Prediction
4.3.2. Wind Direction Prediction
4.3.3. Active Power Prediction
4.3.4. Theoretical Power Prediction
4.4. Comparative Analysis
4.4.1. Active Power Prediction Comparison
4.4.2. Wind Speed Prediction Comparison
4.4.3. Wind Direction Prediction Comparison
4.4.4. Theoretical Power Prediction Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mamat, R.; Sani, M.; Sudhakar, K. Renewable energy in Southeast Asia: Policies and recommendations. Sci. Total Environ. 2019, 670, 1095–1102. [Google Scholar]
- Fahim, M.; Fraz, K.; Sillitti, A. TSI: Time Series to Imaging based Model for Detecting Anomalous Energy Consumption in Smart Buildings. Inf. Sci. 2020, 523, 1–13. [Google Scholar] [CrossRef]
- Swart, R.; Robinson, J.; Cohen, S. Climate change and sustainable development: Expanding the options. Clim. Policy 2003, 3, S19–S40. [Google Scholar] [CrossRef]
- Khosravi, A.; Machado, L.; Nunes, R. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil. Appl. Energy 2018, 224, 550–566. [Google Scholar] [CrossRef]
- Ghiani, E.; Pisano, G. Impact of Renewable Energy Sources and Energy Storage Technologies on the Operation and Planning of Smart Distribution Networks. In Operation of Distributed Energy Resources in Smart Distribution Networks; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–48. [Google Scholar]
- Zhang, Z.Y.; Wang, K.S. Wind turbine fault detection based on SCADA data analysis using ANN. Adv. Manuf. 2014, 2, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. On the use of high-frequency SCADA data for improved wind turbine performance monitoring. J. Phys. Conf. Ser. 2017, 926. [Google Scholar] [CrossRef]
- Marti-Puig, P.; Blanco-M, A.; Cárdenas, J.J.; Cusidó, J.; Solé-Casals, J. Feature selection algorithms for wind turbine failure prediction. Energies 2019, 12, 453. [Google Scholar] [CrossRef] [Green Version]
- Xiaodan, W.; Wenying, L.; Ningbo, W.; Yanhong, M. Short-term wind power prediction based on time series analysis model. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 22–23 March 2013. [Google Scholar]
- Barbosa de Alencar, D.; de Mattos Affonso, C.; Limão de Oliveira, R.C.; Moya Rodriguez, J.L.; Leite, J.C.; Reston Filho, J.C. Different models for forecasting wind power generation: Case study. Energies 2017, 10, 1976. [Google Scholar] [CrossRef] [Green Version]
- Pandit, R.K.; Infield, D. Performance Assessment of a Wind Turbine Using SCADA based Gaussian Process Model. Int. J. Prognostics Health Manag. 2018, 9, 64549. [Google Scholar]
- Dai, J.; Yang, X.; Hu, W.; Wen, L.; Tan, Y. Effect investigation of yaw on wind turbine performance based on SCADA data. Energy 2018, 149, 684–696. [Google Scholar] [CrossRef]
- Sun, H.; Gao, X.; Yang, H. A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect. Renew. Sustain. Energy Rev. 2020, 132, 110042. [Google Scholar] [CrossRef]
- Gao, X.; Li, B.; Wang, T.; Sun, H.; Yang, H.; Li, Y.; Wang, Y.; Zhao, F. Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements. Appl. Energy 2020, 260, 114272. [Google Scholar] [CrossRef]
- Sun, H.; Qiu, C.; Lu, L.; Gao, X.; Chen, J.; Yang, H. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Appl. Energy 2020, 280, 115880. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Zhou, Y.; Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2823–2824. [Google Scholar]
- Wang, S.; Jiang, J. Learning Natural Language Inference with LSTM. arXiv 2016, arXiv:1512.08849. [Google Scholar]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to Diagnose with LSTM Recurrent Neural Networks. arXiv 2016, arXiv:1511.03677. [Google Scholar]
- Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind power short-term prediction based on LSTM and discrete wavelet transform. Appl. Sci. 2019, 9, 1108. [Google Scholar] [CrossRef] [Green Version]
- Son, N.; Yang, S.; Na, J. Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory. Energies 2019, 12, 3901. [Google Scholar] [CrossRef] [Green Version]
- Erisen, B. Wind Turbine Scada Dataset. 2018. Available online: https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset (accessed on 23 December 2020).
- Bergey, K.H. The Lanchester-Betz limit (energy conversion efficiency factor for windmills). J. Energy 1979, 3, 382–384. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memroy. Neural Comput. 1997, 9, 1735–1780. Available online: https://www.bioinf.jku.at/publications/older/2604.pdf (accessed on 8 May 2012). [CrossRef] [PubMed]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Ghofrani, M.; Suherli, A. Time series and renewable energy forecasting. Time Ser. Anal. Appl. 2017, 2017, 77–92. [Google Scholar]
Hyperparameters | Value |
---|---|
Loss Function | Mean Absolute Error |
LSTM Cells | 65 |
Dropout | 2% |
Batch size | 15 |
Optimizer | Adam |
epochs | 21 |
Month | MAE | MSE | |
---|---|---|---|
January | 0.027 | 0.002 | 0.939 |
February | 0.024 | 0.001 | 0.949 |
March | 0.025 | 0.001 | 0.959 |
April | 0.015 | 0.000 | 0.977 |
May | 0.023 | 0.001 | 0.902 |
June | 0.024 | 0.001 | 0.91 |
July | 0.018 | 0.001 | 0.912 |
August | 0.017 | 0.001 | 0.970 |
September | 0.023 | 0.001 | 0.958 |
October | 0.021 | 0.001 | 0.965 |
November | 0.025 | 0.001 | 0.973 |
December | 0.020 | 0.001 | 0.978 |
Month | MAE | MSE | |
---|---|---|---|
January | 0.03 | 0.008 | 0.888 |
February | 0.028 | 0.01 | 0.785 |
March | 0.042 | 0.024 | 0.57 |
April | 0.025 | 0.006 | 0.866 |
May | 0.017 | 0.004 | 0.733 |
June | 0.023 | 0.006 | 0.877 |
July | 0.079 | 0.047 | 0.556 |
August | 0.018 | 0.007 | 0.365 |
September | 0.013 | 0.001 | 0.954 |
October | 0.038 | 0.024 | 0.366 |
November | 0.011 | 0.001 | 0.975 |
December | 0.045 | 0.025 | 0.738 |
Month | MAE | MSE | |
---|---|---|---|
January | 0.031 | 0.006 | 0.966 |
February | 0.028 | 0.004 | 0.955 |
March | 0.049 | 0.008 | 0.945 |
April | 0.019 | 0.001 | 0.983 |
May | 0.054 | 0.007 | 0.917 |
June | 0.057 | 0.008 | 0.906 |
July | 0.016 | 0.002 | 0.912 |
August | 0.037 | 0.003 | 0.97 |
September | 0.036 | 0.003 | 0.976 |
October | 0.044 | 0.005 | 0.961 |
November | 0.029 | 0.004 | 0.975 |
December | 0.02 | 0.003 | 0.98 |
Month | MAE | MSE | |
---|---|---|---|
January | 0.078 | 0.014 | 0.882 |
February | 0.056 | 0.008 | 0.924 |
March | 0.05 | 0.007 | 0.951 |
April | 0.023 | 0.002 | 0.981 |
May | 0.065 | 0.01 | 0.899 |
June | 0.069 | 0.011 | 0.894 |
July | 0.022 | 0.002 | 0.906 |
August | 0.043 | 0.005 | 0.963 |
September | 0.042 | 0.005 | 0.967 |
October | 0.051 | 0.007 | 0.949 |
November | 0.036 | 0.005 | 0.966 |
December | 0.042 | 0.006 | 0.958 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, I.; Fahim, M. Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System. Energies 2021, 14, 125. https://doi.org/10.3390/en14010125
Delgado I, Fahim M. Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System. Energies. 2021; 14(1):125. https://doi.org/10.3390/en14010125
Chicago/Turabian StyleDelgado, Imre, and Muhammad Fahim. 2021. "Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System" Energies 14, no. 1: 125. https://doi.org/10.3390/en14010125
APA StyleDelgado, I., & Fahim, M. (2021). Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System. Energies, 14(1), 125. https://doi.org/10.3390/en14010125