Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island
Abstract
:1. Introduction
2. Materials
2.1. Study Sites and Reference Data
2.2. Data Sources
3. Methods
- Input feature preparation, features are opportunely extracted from each available satellite data source among S1, S2 and L8, and a further features vector is obtained by concatenating the previously extracted features.
- Classification, for each of the previously defined features vector, a ML classifier is opportunely designed depending on the input data source.
- Combination, the outcomes coming from each classifier are merged to provide a final lava flow map.
3.1. Input Feature Preparation
3.2. Classification
3.3. Combination
4. Results
4.1. 2018 Etna Eruption
4.2. 2014–2015 Fogo Eruption
4.3. Performance Indices
- accuracy (ACC) = [A(test ∩ real)/A(test ∪ real)]1/2
- precision (also known as the positive predictive value, PPV) = [A(test ∩ real)/A(test)]1/2
- sensitivity (also known as the true positive rate, TPR) = [A(test ∩ real)/A(real)]1/2
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Day, S.J.; Faria, B.V.E.; Fonseca, J.F.B.D. Damage from lava flows: Insights from the 2014–2015 eruption of Fogo, Cape Verde. J. Appl. Volcanol. 2017, 6, 6. [Google Scholar] [CrossRef]
- Poland, M.P.; Lopez, T.; Wright, R.; Pavolonis, M.J. Forecasting, Detecting, and Tracking Volcanic Eruptions from Space. Remote Sens. Earth Syst. Sci. 2020, 3, 55–94. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Fink, J.H.; Srivastava, A.; Sylvester, D.; Blaauw, D. Lava Flows and Domes: Emplacement Mechanisms and Hazard Implications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. GSA Bull. 2015, 128, 752–763. [Google Scholar] [CrossRef]
- Ganci, G.; James, M.R.; Calvari, S.; Del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Bilotta, G.; Cappello, A.; Buscarino, A.; Del Negro, C.; Fortuna, L. Improving cloud detection with imperfect satellite images using an artificial neural network approach. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019. [Google Scholar]
- Marchese, F.; Genzano, N.; Neri, M.; Falconieri, A.; Mazzeo, G.; Pergola, N. A multi-channel algorithm for mapping vol-canic thermal anomalies by means of sentinel-2 MSI and landsat-8 OLI data. Remote Sens. 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
- Flynn, L.P.; Mouginis-Mark, P.J.; Horton, K.A. Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991. Bull. Volcanol. 1994, 56, 284–296. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Bilotta, G.; Cappello, A.; Del Negro, C.; Fortuna, L. Smart Decision Support Systems for Volcanic Applications. Energies 2019, 12, 1216. [Google Scholar] [CrossRef] [Green Version]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Fielding, E.; Patrick, M.; Trautwein, C. Lava volume estimated by precision combination of multiple baseline space-borne and airborne interferometric synthetic aperture radar: Application to the 1997 eruption of Okmok Volcano, Alaska. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1428–1436. [Google Scholar]
- Rowland, S.K.; Harris, A.J.L.; Wooster, M.J.; Amelung, F.; Garbeil, H.; Wilson, L.; Mouginis-Mark, P.J. Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data: The 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galapagos. Bull. Volcanol. 2003, 65, 311–330. [Google Scholar] [CrossRef]
- Pinel, V.; Poland, M.; Hooper, A. Volcanology: Lessons learned from Synthetic Aperture Radar imagery. J. Volcanol. Geotherm. Res. 2014, 289, 81–113. [Google Scholar] [CrossRef]
- Ebmeier, S.K.; Biggs, J.; Mather, T.A.; Elliott, J.; Wadge, G.; Amelung, F. Measuring large topographic change with InSAR: Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet. Sci. Lett. 2012, 335, 216–225. [Google Scholar] [CrossRef] [Green Version]
- McAlpin, D.; Meyer, F.J. Multi-sensor data fusion for remote sensing of post-eruptive deformation and depositional features at Redoubt Volcano. J. Volcanol. Geotherm. Res. 2013, 259, 414–423. [Google Scholar] [CrossRef]
- Whelley, P.; Jay, J.; Calder, E.S.; Pritchard, M.E.; Cassidy, N.J.; Alcaraz, S.; Pavez, A. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile. Bull. Volcanol. 2011, 74, 511–531. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, H.; Poland, M.P.; Schmidt, D.A.; Cashman, K.V.; Sherrod, D.R.; Espinosa, A.T. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem. Geophys. Geosyst. 2012, 13, 13. [Google Scholar] [CrossRef]
- Meyer, F.; McAlpin, D.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P.; Dehn, J. Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS J. Photogramm. Remote Sens. 2015, 100, 106–117. [Google Scholar] [CrossRef]
- Wadge, G.; Saunders, S.; Itikarai, I. Pulsatory andesite lava flow at Bagana Volcano. Geochem. Geophys. Geosystems 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P.J. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology 1996, 24. [Google Scholar] [CrossRef] [Green Version]
- Ajadi, O.A.; Meyer, F.J.; Webley, P. Change Detection in Synthetic Aperture Radar Images Using a Multiscale-Driven Approach. Remote Sens. 2016, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Rosin, P.L. Thresholding for Change Detection. Comput. Vis. Image Underst. 2002, 86, 79–95. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.-J.; Park, S.-E. Correction of Atmospheric Phase Screen in Time Series InSAR Using WRF Model for Monitoring Volcanic Activities. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2678–2689. [Google Scholar] [CrossRef]
- Shahrezaei, I.H.; Kim, H.-C. Fractal Analysis and Texture Classification of High-Frequency Multiplicative Noise in SAR Sea-Ice Images Based on a Transform- Domain Image Decomposition Method. IEEE Access 2020, 8, 40198–40223. [Google Scholar] [CrossRef]
- Bignami, C.; Chini, M.; Amici, S.; Trasatti, E. Synergic Use of Multi-Sensor Satellite Data for Volcanic Hazards Monitoring: The Fogo (Cape Verde) 2014–2015 Effusive Eruption. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Rykhus, R.; Masterlark, T.; Dean, K.G. Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sens. Environ. 2004, 91, 345–353. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Calvari, S.; Del Negro, C. Recognizing Eruptions of Mount Etna through Machine Learning Using Multiperspective Infrared Images. Remote Sens. 2020, 12, 970. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Cappello, A.; Neri, M.; Acocella, V.; Gallo, G.; Vicari, A.; Del Negro, C. Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull. Volcanol. 2012, 74, 2083–2094. [Google Scholar] [CrossRef]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna Eruption: A Small but Intense Eruptive Event or the Starting Phase of a Larger One? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Day, S.J.; Carracedo, J.; Guillou, H.; Pais, F.J.P.; Badiola, E.R.; Fonseca, J.F.; Heleno, S.I. Comparison and cross-checking of historical, archaeological and geological evidence for the location and type of historical and sub-historical eruptions of multiple-vent oceanic island volcanoes. Geol. Soc. Lond. Spec. Publ. 2000, 171, 281–306. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Calvari, S.; Pérez, N.M.; Hernández, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C.; Vitória, S. Lava flow hazard modeling during the 2014-2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [Google Scholar] [CrossRef] [Green Version]
- Karamanolakis, G.; Hsu, D.; Gravano, L. Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2019; pp. 1–10. [Google Scholar]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Mastriani, M.; Giraldez, A.E. Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthet-ic-Aperture Radar Images. arXiv 2016, arXiv:1608.01993. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Kereszturi, G.; Cappello, A.; Ganci, G.; Procter, J.; Nemeth, K.; Del Negro, C.; Cronin, S.J. Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment. Bull. Volcanol. 2014, 76, 1–17. [Google Scholar] [CrossRef]
- Kereszturi, G.; Nemeth, K.; Moufti, M.R.; Cappello, A.; Murcia, H.; Ganci, G.; Del Negro, C.; Procter, J.; Zahran, H.M.A. Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia—Insights from surface morphology and lava flow simulations. J. Volcanol. Geotherm. Res. 2016, 309, 14–30. [Google Scholar] [CrossRef]
- Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. Influence of topographic data uncertainties and model resolution on the numerical simulation of lava flows. Environ. Model. Softw. 2019, 112, 1–15. [Google Scholar] [CrossRef]
- Calvari, S.; Ganci, G.; Vitória, S.; Hernández, P.A.; Pérez, N.M.; Barrancos, J.; Alfama, V.; Dionis, S.; Cabral, J.; Cardoso, N.; et al. Satellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014–2015 Effusive Eruption at Fogo Volcano (Cape Verde). Remote Sens. 2018, 10, 1115. [Google Scholar] [CrossRef] [Green Version]
Sensor | Characteristics |
---|---|
Advanced Land Imager (ALI) on-board the NASA Earth Observation (EO)-1 satellite | 9 bands: VNIR-SWIR Resolution: 30 m |
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on-board NASA Terra | 14 bands: VNIR-SWIR-TIR Resolution: 15, 30 and 90 m |
Advanced Very High Resolution Radiometer (AVHRR) on-board the National Oceanic and Atmospheric Administration (NOAA) satellites | 5 bands: VNIR-SWIR-MIR-TIR Resolution: 1100 m |
Imager on-board the NASA Geostationary Operational Environmental Satellite (GOES) | 5 bands: VNIR-MIR-TIR Resolutions: 1000–4000 m |
Moderate-resolution Imaging Spectroradiometer (MODIS) on-board NASA Terra and Aqua satellites | 32 bands: VNIR-MIR-TIR Resolutions: 250, 500 and 1000 m |
Operational Land Imager (OLI) on-board the NASA Landsat-8 satellite | 9 bands: VNIR-SWIR Resolutions: 15–30 m |
Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the ESA Meteosat Second Generation satellites | 12 bands: VNIR-TIR Resolution: 1000–3000 m |
Thermal Infrared Sensor (TIRS) on-board the NASA Lansdsat-8 satellite | 2 bands: TIR Resolution: 100 m |
Visible Infrared Imaging Radiometer Suite (VIIRS) on board the NASA Suomi National Polar-Orbiting Partnership (S-NPP) satellite | 22 bands: VNIR-SWIR-TIR Resolutions: 375–750 m |
Multi Spectral Instrument (MSI) on-board the European Space Agency (ESA) Sentinel-2A and Sentinel-2B satellites | 10 bands: VNIR-SWIR Resolutions: 10–20 m |
Mission | Sensor | Acquisition Date |
---|---|---|
Sentinel-1 | SAR | 22 December 2018 |
Sentinel-1 | SAR | 28 December 2018 |
Sentinel-2 | MSI | 6 December 2018 |
Sentinel-2 | MSI | 11 December 2018 |
Sentinel-2 | MSI | 11 December 2018 |
Sentinel-2 | MSI | 16 December 2018 |
Sentinel-2 | MSI | 24 December 2018 |
Sentinel-2 | MSI | 29 December 2018 |
Sentinel-2 | MSI | 8 January 2019 |
Sentinel-2 | MSI | 8 January 2019 |
Sentinel-2 | MSI | 15 January 2019 |
Sentinel-2 | MSI | 15 January 2019 |
Sentinel-2 | MSI | 25 January 2019 |
Landsat-8 | OLI/TIRS | 9 November 2018 |
Landsat-8 | OLI/TIRS | 27 December 2018 |
Data | Area [km2] | ACC | PPV | TPR |
---|---|---|---|---|
Sentinel-1 | 0.94 | 0.74 | 0.83 | 0.86 |
Sentinel-2 | 0.75 | 0.83 | 0.94 | 0.87 |
Landsat-8 | 0.98 | 0.82 | 0.87 | 0.93 |
Fused | 1.00 | 0.84 | 0.89 | 0.95 |
Combined | 1.00 | 0.85 | 0.88 | 0.97 |
Mission | Sensor | Acquisition Date |
---|---|---|
Sentinel-1 | SAR | 3 November 2014 |
Sentinel-1 | SAR | 02 January 2015 |
Landsat-8 | OLI/TIRS | 23 October 2014 |
Landsat-8 | OLI/TIRS | 11 January 2015 |
Data | Area [km2] | ACC | PPV | TPR |
---|---|---|---|---|
Sentinel-1 | 2.54 | 0.70 | 0.97 | 0.71 |
Landsat-8 | 1.60 | 0.57 | 0.98 | 0.57 |
Fused | 4.34 | 0.92 | 0.98 | 0.93 |
Combined | 4.34 | 0.92 | 0.98 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradino, C.; Bilotta, G.; Cappello, A.; Fortuna, L.; Del Negro, C. Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island. Energies 2021, 14, 197. https://doi.org/10.3390/en14010197
Corradino C, Bilotta G, Cappello A, Fortuna L, Del Negro C. Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island. Energies. 2021; 14(1):197. https://doi.org/10.3390/en14010197
Chicago/Turabian StyleCorradino, Claudia, Giuseppe Bilotta, Annalisa Cappello, Luigi Fortuna, and Ciro Del Negro. 2021. "Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island" Energies 14, no. 1: 197. https://doi.org/10.3390/en14010197
APA StyleCorradino, C., Bilotta, G., Cappello, A., Fortuna, L., & Del Negro, C. (2021). Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island. Energies, 14(1), 197. https://doi.org/10.3390/en14010197