Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda
Abstract
:1. Introduction
2. Literature Review for Anaerobic Digestion and Biogas Bottling
3. Case Studies on Anaerobic Digestion and Biogas Use
3.1. Ghana
- Design and installation of agricultural waste-to-energy or feedstock to energy systems for oil palm plantations, food/fruit processing, abattoirs and packaging companies;
- Biogas lanterns and generators for rural communities—sale of equipment components to landlords and estate companies with biogas digesters;
- Wastewater/effluent/sludge to energy using AD from starch factories, breweries, etc;
- Extraction, cleaning, storage and use of landfill gas from various open dumps for energy and electricity;
- Combined faecal sludge and municipal solid waste to energy systems.
3.2. Uganda
4. Materials and Methods
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miltner, M.; Makaruk, A.; Harasek, M. Review on Available Biogas Upgrading Technologies and Innovations towards Advanced Solutions. J. Clean. Prod. 2017, 161, 1329–1337. [Google Scholar] [CrossRef]
- Weiland, P. Biogas Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Jain, S. Global Potential of Biogas; World Biogas Association: London, UK, 2019. [Google Scholar]
- Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic Digestion for Bioenergy Production: Global Status, Environmental and Techno-Economic Implications, and Government Policies. Bioresour. Technol. 2018, 247, 1015–1026. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Commission: Brussels, Belgium, 2009.
- Fuel Quality Directive, Directive 2009/30/EC. Available online: https://www.lexisnexis.co.uk/legal/guidance/fuel-quality-directive-2009-30-ec-snapshot (accessed on 24 June 2021).
- Anonymous Second European Climate Change Programme. Available online: https://ec.europa.eu/clima/policies/eccp/second_en (accessed on 27 June 2019).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Y.-X.; Wang, J.-Z.; Chen, G.; Battye, H. Where Is the Future of China’s Biogas? Review, Forecast, and Policy Implications. Pet. Sci. 2016, 13, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to Biogas Dissemination in India: A Review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Roopnarain, A.; Adeleke, R. Current Status, Hurdles and Future Prospects of Biogas Digestion Technology in Africa. Renew. Sustain. Energy Rev. 2017, 67, 1162–1179. [Google Scholar] [CrossRef]
- Kammila, S.; Kappen, J.F.; Rysankova, D.; Hyseni, B.; Putti, V.R. Clean and Improved Cooking in Sub-Saharan Africa: A Landscape Report; The World Bank: Washington, DC, USA, 2014; pp. 1–182. [Google Scholar]
- Kapdi, S.S.; Vijay, V.K.; Rajesh, S.K.; Prasad, R. Biogas Scrubbing, Compression and Storage: Perspective and Prospectus in Indian Context. Renew. Energy 2005, 30, 1195–1202. [Google Scholar] [CrossRef]
- Harsha, D.N.; Yadwad, A.R.; Nadeem, M.D. Planning and Design for Commercialization of Biogas Bottling Plant for Production of Green and Low-Cost Fuel with Utilization of Biomass Resources. Int. J. Sci. Eng. Res. 2015, 6, 4. [Google Scholar]
- Salave, H.S.; Desai, A.D. Design, Development and Experimental Investigation on Various Biogas Upgrading Techniques. IOSR J. Mech. Civ. Eng. 2017, 17, 55–60. [Google Scholar] [CrossRef]
- Felton, G.; Lansing, S.; Moss, A.; Klavon, K. Anaerobic Digestion: Basic Processes for Biogas Production; Fact Sheet; University of Maryland: Maryland, MD, USA, 2014. [Google Scholar]
- Raja, I.A.; Wazir, S. Biogas Production: The Fundamental Processes. Univers. J. Eng. Sci. 2017, 5, 29–37. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Biogas Generation through Anaerobic Digestion Process—An Overview. Res. J. Chem. Environ. 2014, 18, 80–93. [Google Scholar]
- Zhang, Q.; Hu, J.; Lee, D.-J. Biogas from Anaerobic Digestion Processes: Research Updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Merlin Christy, P. A Review on Current Aspects and Diverse Prospects for Enhancing Biogas Production in Sustainable Means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Kwietniewska, E.; Tys, J. Process Characteristics, Inhibition Factors and Methane Yields of Anaerobic Digestion Process, with Particular Focus on Microalgal Biomass Fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [Green Version]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.; Dow, J. Biogas Production from Anaerobic Digestion of Food Waste and Relevant Air Quality Implications. J. Air Waste Manag. Assoc. 2017, 67, 1000–1011. [Google Scholar] [CrossRef]
- Mel, M.; Sharuzaman, M.A.H.; Setyobudi, R.H. Removal of CO2 from Biogas Plant Using Chemical Absorption Column. In AIP Conference Proceedings, Vol. 1755, Issue 1; AIP Publishing LLC: New York, NY, USA, 2016; p. 050005. [Google Scholar]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Sahota, S.; Shah, G.; Ghosh, P.; Kapoor, R.; Sengupta, S.; Singh, P.; Vijay, V.; Sahay, A.; Vijay, V.K.; Thakur, I.S. Review of Trends in Biogas Upgradation Technologies and Future Perspectives. Bioresour. Technol. Rep. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Shukla, M.K. Portable Biogas Bottling Plant: A Practical Approach for Using Biogas as Transportation Fuel in Rural Areas. Int. J. Oil Gas Coal Technol. 2009, 2, 379–388. [Google Scholar] [CrossRef]
- Bauer, F.; Persson, T.; Hulteberg, C.; Tamm, D. Biogas Upgrading—Technology Overview, Comparison and Perspectives for the Future. Biofuels Bioprod. Biorefin. 2013, 7, 499–511. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of Appropriate Biogas Upgrading Technology-a Review of Biogas Cleaning, Upgrading and Utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Biowaste as Feedstock for 2nd Generation, Valorgas Project Final Publishable Summary Report. Available online: https://cordis.europa.eu/docs/results/241334/final1-valorgas-241334-final-publishable-summary-140110.pdf (accessed on 24 June 2021).
- Lauer, M.; Dotzauer, M.; Hennig, C.; Lehmann, M.; Nebel, E.; Postel, J.; Szarka, N.; Thrän, D. Flexible Power Generation Scenarios for Biogas Plants Operated in Germany: Impacts on Economic Viability and GHG Emissions. Int. J. Energy Res. 2017, 41, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Maurus, K.; Ahmed, S.; Kazda, M. Beneficial Effects of Intermittent Feedstock Management on Biogas and Methane Production. Bioresour. Technol. 2020, 304, 123004. [Google Scholar] [CrossRef] [PubMed]
- MoFA. Agriculture in Ghana—Facts and Figures. 2012. Available online: http://www.e-agriculture.gov.gh/index.php/2014-07-22-14-39-46/agric-facts-and-figures-2012 (accessed on 24 June 2021).
- Fobil, J.; Carboo, D.; Armah, N. Evaluation of Municipal Solid Wastes (MSW) for Utilisation in Energy Production in Developing Countries. Int J Environ. Technol. Manag. 2005, 5, 76–86. [Google Scholar] [CrossRef]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of Biomass Residue Availability and Bioenergy Yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Ghana Energy Commission. Baseline Study of Renewable Energy Technologies in Ghana Vol. 1. Available online: http://energycom.gov.gh/rett/files/Baseline-Study-of-Renewable-Energy-Technologies.pdf (accessed on 24 June 2021).
- Duku, M.H.; Gu, S.; Hagan, E.B. A Comprehensive Review of Biomass Resources and Biofuels Potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Mokhtar, A.S.; Bashir, N.; Saidur, R. An Overview of Agricultural Biomass for Decentralized Rural Energy in Ghana. Renew. Sustain. Energy Rev. 2013, 20, 15–25. [Google Scholar] [CrossRef]
- Global Network of Regional Sustainable Energy Centers (GN-SEC). REEP Renewabel Energy Policy Framework for Climate Change Mitigation in Ghana. Available online: https://www.gn-sec.net/content/renewabel-energy-policy-framework-climate-change-mitigation-ghana (accessed on 6 December 2019).
- Ulrike, D.; Karl-Heinz, P.; Navina, G.S. Biogas in Ghana Sector—Analysis of Potential and Framework Conditions. Available online: https://energypedia.info/wiki/File:Biogas_in_Ghana_Sector_-_Analysis_of_Potential_and_Framework_Conditions_2014.pdf (accessed on 6 December 2019).
- MoFA. Livestock Population. Available online: https://mofa.gov.gh/site/directorates/technical-directorates/veterinary-services (accessed on 24 June 2021).
- Larson, E.D.; Kartha, S. Expanding Roles for Modernized Biomass Energy. Energy Sustain. Dev. 2000, 4, 15–25. [Google Scholar] [CrossRef]
- Twinomunji, E.; Kemausuor, F.; Black, M.; Roy, A.; Leach, M.; Oduro, R.; Sadhukhan, J.; Murphy, R. The Potential for Bottled Biogas for Clean Cooking in Africa; Working Paper; Modern Energy Cooking Services Programme, University of Loughborough: Loughborough, UK, 2020. [Google Scholar]
- Awafo, E.A.; Amenorfe, J. Techno-Economic Studies of an Industrial Biogas Plant to Be Implemented at Kumasi Abattoir in Ghana. Sci. Afr. 2021, 11, e00712. [Google Scholar] [CrossRef]
- Agyenim, F.B.; Dzamboe, P.D.; Mohammed, M.; Bawakyillenuo, S.; Okrofu, R.; Decker, E.; Agyemang, V.K.; Nyarko, E.H. Powering Communities Using Hybrid Solar–Biogas in Ghana, a Feasibility Study. Environ. Technol. Innov. 2020, 19, 100837. [Google Scholar] [CrossRef]
- Cudjoe, D.; Nketiah, E.; Obuobi, B.; Adu-Gyamfi, G.; Adjei, M.; Zhu, B. Forecasting the Potential and Economic Feasibility of Power Generation Using Biogas from Food Waste in Ghana: Evidence from Accra and Kumasi. Energy 2021, 226, 120342. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Animal Industry and Fisheries. Performance-Report-2016–2017; MAAIF: Entebbe, Uganda, 2018. [Google Scholar]
- Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Bioenergy Potential of Agricultural and Forest Residues in Uganda. Biomass Bioenergy 2013, 56, 515–525. [Google Scholar] [CrossRef]
- Gebrezgabher, S.A.; Amewu, S.; Taron, A.; Otoo, M. Energy Recovery from Domestic and Agro-Waste Streams in Uganda: A Socioeconomic Assessment; Technical Report; CGIAR Research Program on Water, Land and Ecosystems, International Water Management Institute: Giza, Egypt, 2016. [Google Scholar]
- Uganda Bureau of Statistics (UBOS). Report on the Annual Business Inquiry, 2006/2007; Technical Report; UBOS: Kampala, Uganda, 2010.
- Owusu, P.A.; Banadda, N. Livestock Waste-to-Bioenergy Generation Potential in Uganda. Environ. Res. Eng. Manag. 2017, 73, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Global Green Growth Institute. Kampala Municipal Solid Waste Value Chain Mapping; Technical Report; GGGI: Kampala, Uganda, 2018. [Google Scholar]
- Arthur, R.; Brew-Hammond, A. Potential Biogas Production from Sewage Sludge: A Case Study of the Sewage Treatment Plant at Kwame Nkrumah University of Science and Technology, Ghana. Int. J. Energy Environ. 2010, 1, 1009–1015. [Google Scholar]
- OAG. Management of Sewerage in Urban Areas by National Water and Sewerage Corporation; Technical Report; Office of the Auditor General: Kampala, Uganda, 2015.
- Ocwieja, S.M. Life Cycle Thinking Assessment Applied to Three Biogas Projects in Central Uganda. Master’s Thesis, Michigan Technical University, Houghton, MI, USA, 2010. [Google Scholar]
- Okure, M.; Tuhairwe, F.; Musinguzi, W.B. Technical and Economic Viability of Biogas-Based Electricity Generation for Distributed Renewable Energy Systems in Livestock Communities of Uganda. In Proceeding of the LeNSes Conference, Cape Town, South Africa, 28–30 September 2016. [Google Scholar]
- Asante, K.P.; Afari-Asiedu, S.; Abdulai, M.A.; Dalaba, M.A.; Carrión, D.; Dickinson, K.L.; Abeka, A.N.; Sarpong, K.; Jack, D.W. Ghana’s Rural Liquefied Petroleum Gas Program Scale up: A Case Study. Energy Sustain. Dev. 2018, 46, 94–102. [Google Scholar] [CrossRef]
- MECS. Cooking with Electricity in Uganda: Barriers and Opportunities; Working Paper; Modern Energy Cooking Services Programme, University of Loughborough: Loughborough, UK, 2020. [Google Scholar]
- Parawira, W. Biogas Technology in Sub-Saharan Africa: Status, Prospects and Constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar] [CrossRef]
- Owens, G. Best Practices Guide: Economic & Financial Evaluation of Renewable Energy Projects; Technical Report; Energy and Environment Training Program Office of Energy, Environment and Technology Global Bureau, Center for Environment United States Agency for International Development: Washington, DC, USA, 2002.
- GLPGP. Assessing Potential for BioLPG Production and Use within the Cooking Energy Sector in Africa; Technical Report; Global LPG Partnership: New York, NY, USA, 2020. [Google Scholar]
- SKM Enviros. Analysis of Characteristics and Growth Assumptions Regarding ad Biogas Combustion for Heat, Electricity and Transport and Biomethane Production and Injection to the Grid (Reference No: 09/06/2010); Technical Report; Department of Energy and Climate Change: Washington, DC, USA, 2011.
- Kemausuor, F.; Adaramola, M.S.; Morken, J. A Review of Commercial Biogas Systems and Lessons for Africa. Energies 2018, 11, 2984. [Google Scholar] [CrossRef] [Green Version]
Residue Type | Quantity (Mt) | Biogas (Mm3 CH4/Year) | Energy (PJ/Year) |
---|---|---|---|
Field crop residues | 20 | 1600 | 57 |
Process residues | 750 | 27 | |
Wood waste | 0.35 | 19 | 0.63 |
Animal manure | 2860 | 100 | 3.6 |
Municipal solid waste | 2.1 | 230 | 8.4 |
Municipal liquid waste | 0.56 | 17 | 0.61 |
Total | 2883 | 2716 | 97.2 |
Agro-Processing Industry | Biogas (Mm3 CH4/Year) | Ref. |
---|---|---|
Oil Palm POME | 0.0118 | [41] |
Fruit processing (mango and pineapple) | 5.32–7.70 | [42] |
Cocoa processing | 4.72 | [42] |
Starch production (cassava) | 6.13 | * pers comm |
Livestock farming | 305.26 | [43,44] |
Livestock processing (data from largest 2 abattoirs) | 0.0179 | [42] |
Total | est. 321.46 |
Agro-Processing Industry | Biogas (Mm3 CH4/Year) | Ref. |
---|---|---|
Livestock farming (cattle, sheep, goats, pigs, poultry) | 1258.00 | [53] |
Livestock processing (estimated biogas production based on wastewater generated/day from 20 abattoirs in Uganda) | 0.0152 | |
Total | est. 1258.02 |
Key Assumptions and Outcomes | Units | Smallest System | Medium-Scale System | Largest System | |||
---|---|---|---|---|---|---|---|
Uganda | Ghana | Uganda | Ghana | Uganda | Ghana | ||
Plant capacity | Nm3/h raw biogas output | 3.00 | 3.00 | 10.00 | 10.00 | 25.00 | 25.00 |
LPG refill price (14.5 kg cylinder) | USD/cylinder | 37.70 | 15.66 | 37.70 | 15.66 | 37.70 | 15.66 |
Price bioCNG (equivalent energy content basis) | USD/kg BioCNG | 2.46 | 1.02 | 2.46 | 1.02 | 2.46 | 1.02 |
Volume agro-waste @12 kg/Nm3 raw biogas | kg/day | 864.00 | 864.00 | 2880.00 | 2880.00 | 7200.00 | 7200.00 |
Price of feedstock | USD/kg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Number of bioCNG cylinders produced | cylinders/day | 4.73 | 4.73 | 15.76 | 15.76 | 39.40 | 39.40 |
Equiv. 14.5 LPG cylinders replaced by bioCNG | cylinders/day | 2.01 | 2.01 | 6.71 | 6.71 | 16.77 | 16.77 |
Income from sale of bioCNG | USD/day | 75.87 | 31.52 | 252.90 | 105.05 | 632.25 | 262.63 |
Compost produced assuming 10% solid | kg/day compost | 86.40 | 86.40 | 288.00 | 288.00 | 720.00 | 720.00 |
Market price of compost (semi dry) | USD/kg compost | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Income from compost sales | USD/day compost | 4.80 | 4.80 | 16.00 | 16.00 | 40.00 | 40.00 |
Total income (bioCNG + fertiliser) | USD/year | 26,554 | 11,030 | 88,515 | 36,768 | 221,287 | 91,919 |
Capex of AD plant | USD | 16,667 | 16,667 | 30,556 | 30,556 | 58,333 | 58,333 |
Capex of bioCNG upgrader and compressor | USD | 25,000 | 25,000 | 35,000 | 35,000 | 60,000 | 60,000 |
Capex of single gas cylinder | USD | 663 | 663 | 663 | 663 | 663 | 663 |
Total capital cost | USD | 51,064 | 51,064 | 96,879 | 96,879 | 196,643 | 196,643 |
Farm owner—operator wage, £833/month | USD/year | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 |
Labour cost: £150/month × 12 months × no. people | USD/year | 5000 | 5000 | 7500 | 7500 | 10,000 | 10,000 |
Land lease cost | USD/year | 0 | 0 | 6944 | 6944 | 13,889 | 13,889 |
Total labour and land costs | USD/year | 5000 | 5000 | 24,444 | 24,444 | 33,889 | 33,889 |
Electricity rate (Uganda) | USD/kWh | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
Energy use by biogas upgrader + compressor | kWh/Nm3 raw biogas | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Cost of electricity for bioCNG + compressor | USD/day | 7.50 | 7.50 | 25.00 | 25.00 | 62.50 | 62.50 |
Servicing and maintenance cost @10% of capex | USD/year | 5106 | 5106 | 9688 | 9688 | 19,664 | 19,664 |
Total overhead and operating cost | USD/year | 12,731 | 12,731 | 42,882 | 42,882 | 75,428 | 75,428 |
Net operating profit | USD/year | 13,823 | −1701 | 45,632 | −6115 | 145,858 | 16,491 |
Payback period | years | 3.69 | −30.02 | 2.12 | −15.84 | 1.35 | 11.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, M.J.; Roy, A.; Twinomunuji, E.; Kemausuor, F.; Oduro, R.; Leach, M.; Sadhukhan, J.; Murphy, R. Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda. Energies 2021, 14, 3856. https://doi.org/10.3390/en14133856
Black MJ, Roy A, Twinomunuji E, Kemausuor F, Oduro R, Leach M, Sadhukhan J, Murphy R. Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda. Energies. 2021; 14(13):3856. https://doi.org/10.3390/en14133856
Chicago/Turabian StyleBlack, Mairi J., Amitava Roy, Edson Twinomunuji, Francis Kemausuor, Richard Oduro, Matthew Leach, Jhuma Sadhukhan, and Richard Murphy. 2021. "Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda" Energies 14, no. 13: 3856. https://doi.org/10.3390/en14133856