Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Advanced Solar Power | ASP |
Aperiodic micropattern-based photovoltaic | AMPV |
Average visible transmittance | AVT |
Building integrated photovoltaic | BIPV |
Cadmium telluride | CdTe |
Clear glass | CG |
International Commission on Illumination | CIE |
International organization of standardization | ISO |
Micrometers | Mm |
Net-zero energy building | NZEB |
Nitrogen oxides | NOx |
Periodic-micropattern-based photovoltaic | PMPV |
Photovoltaic | PV |
Semitransparent photovoltaic | STPV |
Sulfur dioxide | SO2 |
Tera joule | TJ |
Transparent photovoltaic | TPV |
References
- Tripathy, M.; Sadhu, P.K.; Panda, S. A critical review on building integrated photovoltaic products and their applications. Renew. Sustain. Energy Rev. 2016, 61, 451–465. [Google Scholar] [CrossRef]
- Vasiliev, M.; Alameh, K. Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies 2019, 12, 1080. [Google Scholar] [CrossRef] [Green Version]
- Attia, S. Net Zero Energy Buildings (NZEB): Concepts, Frameworks and Roadmap for Project Analysis and Implementation; Elsevier: San Diego, CA, USA, 2018. [Google Scholar]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Cogent Eng. 2016, 3. [Google Scholar] [CrossRef]
- Edenhofer, O.; Madruga, R.P.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781139151153. [Google Scholar]
- Kumar, N.M.; Sudhakar, K.; Samykano, M. Performance comparison of BAPV and BIPV systems with c-Si, CIS and CdTe photovoltaic technologies under tropical weather conditions. Case Stud. Therm. Eng. 2019, 13, 100374. [Google Scholar] [CrossRef]
- Snow, M.; Prasad, D. Designing with Solar Power: A Source Book for Building Integrated Photovoltaics (BIPV); Routledge: London, UK, 2005; pp. 1–128. [Google Scholar]
- Eder, G.; Peharz, G.; Trattnig, R.; Bonomo, P.; Saretta, E.; Frontini, F.; Polo López, C.S.; Rose Wilson, H.; Eisenlohr, J.; Martin Chivelet, N.; et al. Coloured BIPV-Market, Research and Development; International Energy Agency: Paris, France, 2019; p. 60. [Google Scholar]
- Jelle, B.P. Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways. Energies 2015, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex. Document 02010L0031-20181224. Available online: https://eur-lex.europa.eu/eli/dir/2010/31/2018-12-24 (accessed on 13 April 2020).
- Wong, P.; Shimoda, Y.; Nonaka, M.; Inoue, M.; Mizuno, M. Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew. Energy 2008, 33, 1024–1036. [Google Scholar] [CrossRef]
- Peng, J.; Curcija, D.C.; Lu, L.; Selkowitz, S.E.; Yang, H.; Zhang, W. Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate. Appl. Energy 2016, 165, 345–356. [Google Scholar] [CrossRef]
- Bayoumi, M. Impacts of window opening grade on improving the energy efficiency of a façade in hot climates. Build. Environ. 2017, 119, 31–43. [Google Scholar] [CrossRef]
- Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E. Integrated thinking for photovoltaics in buildings. Nat. Energy 2018, 3, 438–442. [Google Scholar] [CrossRef]
- Cohen, J.J.; Reichl, J.; Schmidthaler, M. Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review. Energy 2014, 76, 4–9. [Google Scholar] [CrossRef]
- Mittag, M.; Kutter, C.; Ebert, M.; Wilson, H.R.; Eitner, U. Power loss through decorative elements in the front glazing of BIPV modules. In Proceedings of the 33rd European PV Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017. [Google Scholar]
- Probst, M.M.; Roecker, C. Criteria for architectural integration of active solar systems IEA task 41, subtask A. Energy Procedia 2012, 30, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Tabakovic, M.; Fechner, H.; van Sark, W.; Louwen, A.; Georghiou, G.; Makrides, G.; Loucaidou, E.; Ioannidou, M.; Weiss, I.; Arancon, S.; et al. Status and outlook for building integrated photovoltaics (BIPV) in relation to educational needs in the BIPV Sector. Energy Procedia 2017, 111, 993–999. [Google Scholar] [CrossRef]
- Goh, K.C.; Goh, H.H.; Yap, A.B.K.; Masrom, A.N.; Mohamed, S. Barriers and drivers of Malaysian BIPV application: Perspective of developers. Procedia Eng. 2017, 180, 1585–1595. [Google Scholar] [CrossRef]
- Yang, R.J.; Zou, P. Building integrated photovoltaics (BIPV): Costs, benefits, risks, barriers and improvement strategy. Int. J. Constr. Manag. 2016, 16, 39–53. [Google Scholar] [CrossRef]
- Karakaya, E.; Sriwannawit, P. Barriers to the adoption of photovoltaic systems: The state of the art. Renew. Sustain. Energy Rev. 2015, 49, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.J. Overcoming technical barriers and risks in the application of building integrated photovoltaics (BIPV): Hardware and software strategies. Autom. Constr. 2015, 51, 92–102. [Google Scholar] [CrossRef]
- Azadian, F.; Radzi, M.A.M. A general approach toward building integrated photovoltaic systems and its implementation barriers: A review. Renew. Sustain. Energy Rev. 2013, 22, 527–538. [Google Scholar] [CrossRef]
- Taleb, H.; Pitts, A. The potential to exploit use of building-integrated photovoltaics in countries of the Gulf Cooperation Council. Renew. Energy 2009, 34, 1092–1099. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Solar façades—Main barriers for widespread façade integration of solar technologies. J. Facade Des. Eng. 2017, 5, 51–62. [Google Scholar] [CrossRef]
- Scognamiglio, A.; Privato, C. Starting points for a new cultural vision of BIPV. In Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 1–5 September 2008; pp. 3222–3233. [Google Scholar]
- Lee, K.-T.; Lee, J.Y.; Seo, S.; Guo, L.J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 2014, 3, e215. [Google Scholar] [CrossRef]
- Lien, S.-Y. Artist photovoltaic modules. Energies 2016, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Attoye, D.E.; Aoul, K.A.T.; Hassan, A. A review on building integrated photovoltaic façade customization potentials. Sustainability 2017, 9, 2287. [Google Scholar] [CrossRef] [Green Version]
- Peharz, G.; Berger, K.; Kubicek, B.; Aichinger, M.; Grobbauer, M.; Gratzer, J.; Nemitz, W.; Großschädl, B.; Auer, C.; Prietl, C.; et al. Application of plasmonic coloring for making building integrated PV modules comprising of green solar cells. Renew. Energy 2017, 109, 542–550. [Google Scholar] [CrossRef]
- Soman, A.; Antony, A. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics. Sol. Energy 2019, 181, 1–8. [Google Scholar] [CrossRef]
- Calyxo. CDTE Thin Film Solar Module CX1; Calyxo: Bitterfeld-Wolfen, Germany, 2011. [Google Scholar]
- The Ultimate Guide to Vector Software. CorelDRAW. Available online: https://www.coreldraw.com/en/tips/vector-images/vector-software/ (accessed on 21 June 2021).
- How Do Lasers Work—Basics. Available online: https://www.troteclaser.com/en/faqs/how-does-a-laser-work/ (accessed on 10 September 2020).
- Working Principle of Laser Marking Machine. Available online: https://www.xtlaser.com/for-new-user-working-principle-of-fiber-laser-marking-machine-max-from-xt-laser/ (accessed on 10 September 2020).
- Laser Engraving Glass. Available online: https://www.engraversjournal.com/legacyarticles/2360/ (accessed on 10 September 2020).
- Hwang, I.; Choi, D.; Lee, S.; Seo, J.H.; Kim, K.-H.; Yoon, I.; Seo, K. Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces 2017, 9, 21276–21282. [Google Scholar] [CrossRef]
- Lee, K.; Um, H.-D.; Choi, D.; Park, J.; Kim, N.; Kim, H.; Seo, K. The development of transparent photovoltaics. Cell Rep. Phys. Sci. 2020, 1, 100143. [Google Scholar] [CrossRef]
- Lee, K.; Kim, N.; Kim, K.; Um, H.-D.; Jin, W.; Choi, D.; Park, J.; Park, K.J.; Lee, S.; Seo, K. Neutral-colored transparent crystalline silicon photovoltaics. Joule 2020, 4, 235–246. [Google Scholar] [CrossRef]
- Gratings Separate the Different Colors of Light—Laser Focus World. Available online: https://www.laserfocusworld.com/optics/article/16550914/gratings-separate-the-different-colors-of-light (accessed on 10 September 2020).
- Chen, K.-S.; Salinas, J.-F.; Yip, H.-L.; Huo, L.; Hou, J.; Jen, A.K.-Y. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 2012, 5, 9551–9557. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Lunt, R.R. Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 2012, 101, 043902. [Google Scholar] [CrossRef]
- Colonna, D.; Capogna, V.; Lembo, A.; Brown, T.M.; Reale, A.; Di Carlo, A. Efficient cosensitization strategy for dye-sensitized solar cells. Appl. Phys. Express 2012, 5, 022303. [Google Scholar] [CrossRef]
- Saifullah, M.; Gwak, J.; Yun, J.H. Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV). J. Mater. Chem. A 2016, 4, 8512–8540. [Google Scholar] [CrossRef]
- Yang, C.; Liu, D.; Bates, M.; Barr, M.C.; Lunt, R.R. How to accurately report transparent solar cells. Joule 2019, 3, 1803–1809. [Google Scholar] [CrossRef]
- Fisette, P. Windows: Understanding Energy Efficient Performance. 2003. Available online: https://bct.eco.umass.edu/publications/articles/windows-understanding-energy-efficient-performance/ (accessed on 10 September 2020).
- CIELAB Color Space—Wikipedia. Available online: https://en.wikipedia.org/wiki/CIELAB_color_space (accessed on 10 September 2020).
- Myong, S.Y.; Jeon, S.W. Design of esthetic color for thin-film silicon semi-transparent photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 143, 442–449. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, W.; Xu, B. Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Sci. Hum. Wellness 2015, 4, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Colsmann, A.; Puetz, A.; Bauer, A.; Hanisch, J.; Ahlswede, E.; Lemmer, U. Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties. Adv. Energy Mater. 2011, 1, 599–603. [Google Scholar] [CrossRef]
Sample Name | Haze Ratio |
---|---|
Clear Glass (CG) | 0.9% |
Periodic Micropaterned based PV (PMPV) glass | 10.7% |
Aperiodic Micropaterned based PV (AMPV) glass | 3.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basher, M.K.; Alam, M.N.-E.; Alameh, K. Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications. Energies 2021, 14, 3929. https://doi.org/10.3390/en14133929
Basher MK, Alam MN-E, Alameh K. Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications. Energies. 2021; 14(13):3929. https://doi.org/10.3390/en14133929
Chicago/Turabian StyleBasher, Mohammad Khairul, Mohammad Nur-E Alam, and Kamal Alameh. 2021. "Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications" Energies 14, no. 13: 3929. https://doi.org/10.3390/en14133929
APA StyleBasher, M. K., Alam, M. N. -E., & Alameh, K. (2021). Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications. Energies, 14(13), 3929. https://doi.org/10.3390/en14133929